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ABSTRACT
The performance of the full table scan is critical for the
overall performance of column-store database systems such
as the SAP HANA database. Compressing the underlying
column data format is both an advantage and a challenge,
because it reduces the data volume involved in a scan on
one hand and introduces the need for decompression during
the scan on the other hand. In previous work [26] we have
shown how to accelerate the column-scan with range pred-
icates using SIMD instructions. In this paper, we present
a framework for vectorized scans with more complex predi-
cates. One important building block is the In-List predicate,
where all rows whose values are contained in a given list of
values are selected. While this seems to exhibit only little
data parallelism on first sight, we show that a performant
vectorized implementation is possible using the new Intel
AVX2 instruction set. We also improve our previous algo-
rithms by leveraging the increased vector-width. Finally in
a detailed performance evaluation, we show the benefit of
these optimizations and of the new instruction set: in al-
most all cases our scans needs less than one CPU cycle per
row including scans with In-List predicate, leading to an
overall throughput of 8 billion rows per second and more on
a single core.

1. INTRODUCTION
Today’s processors implement a rich set of techniques to

accelerate the performance of applications. Most prominent
is the use of multiple cores per processor, where each core
can execute an independent thread. Additionally, several
vendors implement simultaneous multi-threading, where a
single core executes two or more threads concurrently and

Figure 1: The codewords of a column are not
aligned to machine word boundaries. They may be
spread across several machine words and share their
machine word(s) with other codewords.

thereby optimizes the usage of the execution units in the
core [1, 8, 13]. But even within a single thread, several in-
structions can be executed inside a single clock cycle.

The focus of this paper lies on SIMD, where a Single In-
struction can perform on Multiple Data elements. SIMD
instructions also benefit from multiple execution ports and
out-of-order execution and can take advantage of multiple
cores by parallel execution. For the evaluation of our algo-
rithms, we use the Intel Advanced Vector Extensions 2 (Intel
AVX2), the implementation of SIMD instructions in the cur-
rent 4th generation Intel Core architecture. They feature a
vector length of 256 bits and implement vector-vector shift
and gather instructions, which play a fundamental role for
the performance of our routines.

These SIMD instructions work on vectors of machine words
such as 8, 16, 32, or 64bit integers. However if a column is
compressed, its values are not materialized in this format in
RAM. Instead, they may be stored in the commonly used
combination of domain encoding and bit-compression: Each
of the n distinct values of a column gets assigned an integer
code between 0 and n − 1 and each value of the column is
replaced by its codeword. The mapping between real values
and codewords is stored in a different datastructure. The
sequence of codewords is stored in a bit stream where ev-
ery codeword just uses a fixed number of b = dlogne bits.
Figure 1 shows an example of a column encoded in such
a bit stream. As the codewords do not start at machine
word boundaries, some unpacking logic is necessary before
the evaluation of the scan predicate.
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The most common scans search values using an equality
predicate, i.e., =, 6=, >,≥, <,≤. All of these can be reduced
to a range predicate of the form [min,max), which is the
predicate we concentrated on in our previous work [26]. For
the range scan, we had two variants: If the selectivity is
very low, the result is materialized in form of a (short) list
of row indices for the matches. In all other cases, the re-
sult is materialized as a bit vector where the 1s represent
the matching rows. However, sometimes more sophisticated
predicates are required. The scan predicate may contain an
arithmetic expression, involve several columns, or constitute
of a list of desired values like in the IN operator in SQL.

The main contribution of this work is a framework for
evaluating almost arbitrarily complex predicates while pre-
serving the highest possible performance. For that, we cat-
egorize the scan predicates into the following types:

Range predicates: All inequality predicates involving a
single column can be expressed as a range predicate.
The same is true for predicates involving arithmetic
expressions on a single column where the expression
can be inverted and applied to the range.

Vectorizable predicates: Many other predicates, includ-
ing many arithmetic expressions on a single column,
can easily be expressed using vector instructions. How-
ever, for good performance, it is important to tightly
integrate unpacking and predicate evaluation. In our
framework we have a template scan that can be ex-
tended by arbitrary vectorized predicates.

In-List predicates: If a list of desired values is given (from
an IN operator or a subquery) or can be created (by
applying the arithmetic expression to all values of a
small dictionary), we translate the values into their
codewords and represent the set of codewords as a bit
vector. Evaluating the predicate is then reduced to
probing the bit vector. Note that technically, this is a
special case of the previous type, but since it is non-
trivial to express probing in a data-parallel way and
an important building block for many predicates, we
list it here as a separate type.

Arbitrary predicates: If none of the above optimizations
can be applied, we provide a fall-back mechanism, where
a block of codewords is unpacked as machine words
into a buffer in cache, on which arbitrary predicates
can be applied including arithmetic expressions and
comparisons of several columns. This routine is also
used to unpack a column for the subsequent database
operator.

Figure 2 gives an overview about how the predicate eval-
uation works in our framework. As a rough overview, the
following vectorized steps are performed on 4 to 256 code-
words in parallel: In the first step, the data is brought into
a format that the predicate can work on. In the most gen-
eral case, this means shuffling all bytes containing bits of
the codeword into the same machine word, cleaning the up-
per (unused) bits of the machine word, i.e., setting them to
zero, aligning the codeword to machine word boundaries, i.e.
shifting the machine word to the right, and finally storing
the result into a buffer. In the second step, the predicate
is evaluated. For the range scan, this consists of two com-
parisons and can be done directly after cleaning by shifting

Figure 2: The four basic steps of all scans: (par-
tially) unpack, evaluate predicate, extract result,
and store result.

the range once before the scan. Vectorized predicates can
be evaluated directly after the alignment to machine word
boundaries, while we delay evaluation of other predicates
until a buffer is filled in order to amortize virtual function
calls etc. In the third step, the result of the predicate eval-
uation has to be extracted, be it a bit or an index indicating
a match or the unpacked codewords in case of an arbitrary
predicate. The last step is to store the extracted result.

In order to benefit fully of the SIMD instructions, many
non-trivial optimizations have to be applied to this scheme.
Skipping the alignment for range predicates and tightly in-
terweaving unpacking and evaluation of vectorized predi-
cates are two important optimizations already visible here.
Additionally, we separately optimize every single bit case,
i.e., we have a different implementation of the above scheme
for every value of b. In some bit cases, a single special SIMD
instruction can perform clean and align at the same time,
while in others, shuffle alone needs three instructions. We
have found reoccurring patters of how SIMD instructions
can be combined intelligently and consider their description
an important part of the contribution of this paper.

The rest of the paper is organized as follows: We first
discuss related work in Section 2. In Section 3 we give de-
tails about how to efficiently implement our framework for
scans with complex predicates. Section 4 presents and dis-
cusses the performance evaluation of these implementation.
Finally, we provide our conclusion and outlook in the last
section.

2. RELATED WORK
This sections relates this paper to existing work. We first

review work on compression in database systems and on
vectorized compression schemes outside the database world.
Then we present previous work in the intersection of the
two domains, i.e., vectorized database column scans, who
all concentrated on scans with rather simple predicates.

2.1 Compression in Database Systems
The usage of compression has a long history in database

systems. Of particular interest are those compression tech-
niques that provide an efficient processing of the data in its
compressed form.
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Graefe and Shapiro [9] were among the first to study com-
pression schemes that allow most of the query processing to
be done on the compressed values. Roth et al. [21] and
Westmann et al. [25] mention null suppression as compres-
sion technique for database systems. Lemke et al. showed
in [17] that the compression of a column store can be used
to overcome the memory wall.

2.2 Vectorized Compression in General
Independent of the usage in databases, Anh and Mof-

fat propose their Simple9 [4] and Simple8 [5] compression
schemes for posting lists. Both methods use the first 3 or 4
bits of each machine word as a selector, and the rest of the
bits as a fixed number of fields with fixed length depend-
ing on the selector, leading to very fast decompression while
maintaining a relatively good compression ratio. Schlegel
et al. [22] implement and analyze vectorized compression
schemes, among them a vectorized version of null suppres-
sion where only entire null bytes are suppressed and sup-
pression is done for every word individually. Stephanov et
al. [23] propose a SIMD variant of varint or vbyte based
on the shuffle instruction. Wassenberg [24] uses a SIMD
compression scheme for lossless image compression. Fang
et al. [7] integrate several compression schemes into their
GPU based query co-processor GDB to speed up queries by
reducing the amount of data transferred to the GPU.

2.3 Vectorized Bit-Packed Compression and
Scan

Several of the compression techniques in the previous sec-
tion require a new data layout. This often results in optimiz-
ing either in terms of compression ratio, scan performance,
or both. They are therefore very attractive and relevant
for scan intensive databases as SAP HANA database. On
the other hand, one of the main benefits of bit-packed com-
pression is the ability to perform random access in constant
time and small overhead, because of its fixed-size encod-
ing. Lemke et al. [17] also use it as a basic building block
of their compression framework. The standard bit-packed
compression is therefore still the most versatile method in
the general purpose system SAP HANA database and many
authors have worked on optimizing it.

Lamport [14] was the first to pack several code words into
a single machine word and perform arithmetic and logic op-
erations in the compressed space. To make some of these
operations simpler, the author adds an additional separa-
tion bit.

Later, unpacking of bit-packed data was optimized by Zu-
chowski et al. [27,28] in the context of domain and dictionary
encoding in their column-store data base system. By ex-
tensive loop-unrolling and implementing individual routines
for each number of bits, the offsets and masks turned into
loop invariants, which can be stored as constants. Please
note that they use the term vectorization in a different way
and their implementation does not feature SIMD instruc-
tions. They also proposed the very popular compression
scheme PFOR-Delta (Patched Frame-of-Reference Delta),
which has the bit-compression unpacking as a subroutine.

Blink’s [20] Frequency Partitioning divides the table into
partitions based on the frequency of tuples and applies fixed
length bit compression to every partition. Their codes also
have a separator bit so that the scan can evaluate inequal-
ities predicates using SIMD instructions without machine

word alignment. They do not mention more complex pred-
icates.

Apart from this, Bit Packing was reimplemented and con-
firmed by many authors in the context of column store databases
as a special kind of Null Suppression suited for dictionary
compression [3, 10].

Holloway et al. [11] investigate on the implications of com-
pression on a full table scan. Like us, they see the increased
importance of full table scans, but their setting is slightly
different: they combine decompressing blocks, (groups of)
columns, and fields with predicate evaluation into a single
generated piece of C code. Furthermore, they also make use
of interleaving the decompression of multiple blocks, in or-
der to improve instruction level parallelism and instruction
flow.

Their bit-vertical format BitWeaving/V (first proposed
by O’Neil et al. [19]) decomposes codes bit-wise to different
locations, which results in a significant advantage for scan
performance through pruning, but puts a huge burden on
any other operation than scanning due to the higher tuple
reconstruction costs. This works well for predicates looking
once at each bit and in their natural order, which is the
case for inequalities and ranges, but does not seem to be
applicable to more complex predicates. Their bit-horizontal
format BitWeaving/H is similar to the SIMD-scan, with the
following differences: (1) code words are separated by an
additional delimiter bit (like Blink [20]), (2) decoding uses
only full-word instructions (as opposed to SIMD instructions
and unlike Blink), and (3) code words do not span machine
words, i.e., machine words are padded if they are not entirely
filled by code words. This reduces the compression ratio,
especially for code words of 21 bits or more where it results
in the same size as an uncompressed vector.

Last but not least, Lemire and Boytsov [15] survey the
performance of a large variety of data parallel integer com-
pression schemes for posting lists. The fastest approach in
their survey (SIMD-BP128* ) is based on bit-packing, which
is very similar to ours. They also analyze bit-packing in iso-
lation, comparing horizontal bit packing with SIMD, vertical
bit packing with SIMD and manually optimized bit packing
without SIMD. They also find that a vertical layout is faster
for unpacking than a horizontal layout. Finally, they foresee
the advantage of wider bit width and more powerful instruc-
tions of Intel AVX2 as it is presented in this paper. As their
implementation is publicly available [16], Section 4 contains
a direct comparison between their and our implementation.

3. ALGORITHMS
This section provides a detailed description of the different

parts of our scanning framework as well as many of the opti-
mization needed for a performant implementation. We start
with the description of the (partial) unpacking of codewords.
We then show how range predicates can be particularly op-
timized and how the result is either stored as a bit vector or
an index vector. Finally, we show how the In-List predicate
can be vectorized.

3.1 Bit-Compression Unpacking
We will first focus on decoding codewords from bit-compression

into 32-bit integers. Since it is normally the first step of a
scan before the evaluation of a predicate, we examine the un-
packing separately. Subsequent steps of the scan can then
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Figure 3: Core steps of the unpacking algorithm
on a 20 bit-case example.

either (1) directly evaluate the predicate using SIMD in-
structions or (2) store the result in a buffer for processing it
sequentially.

Figure 3 illustrates the core steps of the unpacking algo-
rithm in the case of 20 bits per codeword as an example.
The basic ideas apply to all bit cases, but may change in
detail. The upper line shows the packed codewords with
20 bits each. Those codewords are distributed across the
vector register using a shuffle instruction for bytes, so that
each double-word contains all bits of one codeword. Please
note that some of the bytes need to be replicated into two
double-words as they contain bits from two different code-
words. In the third line, the codewords are then shifted to
the right in order to align them. As a last step, a mask is
applied to clean all other bits, which results in one codeword
per double-word.

Algorithm 1 Unpacking algorithm

1: set k to 0
2: for i from 0 to max index/128 do
3: for j from 0 to 15 do
4: parallel load v from input[k ∗ 16 + j ∗ b]
5: shuffle v using shuffle mask(m0, ...,m31)
6: parallel shift v by (s0, ..., s7)
7: parallel and v by (a0, ..., a7)
8: parallel store v in output[i ∗ 16 + j ∗ 8]
9: end for

10: increase k by b
11: end for

The same scheme for unpacking codewords from an array
of bit-fields is given as Algorithm 1. input is a pointer to a
byte array and output is a pointer to an integer array. Only
the first codeword is aligned to a byte boundary. However,
since we use bit-fields of fixed size, this repeats after eight
codewords. As we process eight codewords in parallel, the
loading line 4 has always values that are aligned to bytes.
Lines 5 and 6 then realize the shuffling and shifting of the
entries. Again, the pattern for shuffling and shifting repeats

0

F E D C B A 9 8 7 6 5 4 3 2 1 0

127

Byte #

Src1

9 Src2

Dest

Bit #

v3 v2 v1 v0

v3 v2 v1 v0

0

F E D C B A 9 8 7 6 5 4 3 2 1 0

127

Byte #
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9 Src2
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Bit #
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v3 v2 v1 v0

3146

a) b)

Figure 4: (a) With Intel SSE2 all vector elements
are shifted by the same amount. (b) With Intel
AVX2 element of the vector register can be shifted
independently.

after eight entries and the arguments m and s of the respec-
tive instructions are therefore constant vectors. Finally, the
result can be cleaned and stored in line 7 and 8. Instead
of a simple loop, we use a nested loop where the inner loop
processes 16 codewords. If you then completely unroll the
inner loop, j ∗ b turns into a loop invariant and does not
need to be computed at run-time.

This algorithm almost directly translates to Intel AVX2
instructions. In particular, there are some notable simplifi-
cation compared to our SSE-based implementation [26]:

• By processing 8 instead of 4 codewords in each itera-
tion, only one constant is needed for the shuffle mask
and the shift offsets, respectively.

• By using unaligned loads, it is possible to load registers
in a way that the first codeword always starts at a
byte boundary. This not only results in simpler code
but turned out to be faster, as current architectures
are much more forgiving to unaligned loads. There is
still a performance penalty when data loads are split
across cache lines, but this penalty is amortized by the
reduction in the other cases. As Intel AVX2 organizes
the data in lanes of 128 bit, it is not possible to shuffle
bytes across the lane boundary. However, this can be
simply overcome by loading the lower and the upper
lanes independently. Since the Haswell architecture is
equipped with two load ports, this does not impose
any performance disadvantage.

• Instructions for shifting values in a SIMD register were
already available in previous generations. However,
theses instructions were always shifting all elements
by the same shift amount (see Figure 4 left). In our
SSE-based implementation, a multiplication was used
to workaround this limitation. With Intel AVX2, Intel
has introduced a new variant of the shift instruction for
this and similar situations. The new vector-vector shift
instructions (vpsrlvd, vpsrlvq, vpsravd, vpsllvd,

pvsllvq) allow another SIMD register as second argu-
ment, which determines for each element the number
of bits that the corresponding element in the first ar-
gument is shifted.

The standard algorithm processes 8 codewords per itera-
tion. For lower bit-cases, it is possible to process 16 or 32
codewords per iteration by using instructions that operate
on data types of size byte, word, and double-word. Apart
from this, many other optimizations are possible for specific
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Figure 5: Permutation trick to unpack 32 code-
words with one load for bit-cases 2 and 4.

bit-cases. Depending on the bit-case, we apply one of more
of the following optimizations:

Unpack32 is an optimization that allows to decompress 32
codewords in one iteration with a single load. This
optimization applies for bit-cases 1, 2, 4, and 8. When
a parallel load is executed, the resulting 256-bit regis-
ter contains 32 or more codewords for lower bit-cases.
Then, we shuffle in a way to have a codeword in every
byte. By ordering the codewords appropriately we can
extract 8 consecutive codewords at a time. Figure 5 is
an example of Unpack32 for bit-case 4.

Unpack16 is a similar optimization that applies to bit-
cases 3, 5, 6, 7, 9, 10, and 16 and allows extracting
16 codewords in each iteration. The difference is that
after a load, we shuffle in a way to have one codeword
per word. The order of the shuffled codewords follows
the same logic as for Unpack32.

NoAlign removes the shift instruction for the alignment
in bit-cases 8, 16, 24, and 32, as the data is already
byte-aligned.

16cvt32 is an optimization that replaces the three instruc-
tions, shuffle, align, and clean by one conversion in-
struction for bit-case 16: vpmovzxwd. This instruction
converts a 128-bit vector with eight 16-bit integers to a
256-bit vector with eight 32-bit integers, thus zeroing
the upper bytes.

Broadcast: For the lower bit-cases, it is possible to save
one load by loading an SSE vector and broadcasting it
to the upper lane with the vbroadcasti128 instruction.

OptimizeAlign is an optimization that, combined with
the appropriate shuffle masks, allows to align the data
with an optimized number of instructions ranging from
one independent shift for bit-cases 3, 5, 6, 7, 9, and 10
to three independent shifts for bit-case 30.

3.2 Range Predicate with Index Vector Result
A common operation of data is the search of entries that

fulfill a certain criterion. In this section, we therefore de-
scribe how the data unpacking and filtering can be combined
for achieving better performance than two individual steps.

The first variant of the scan algorithm handles range search
operations with very low selectivity. It takes a range min
and max as a predicate and yields an index vector that con-
tains the indices of the codewords that are within the range.
The general scheme is listed as Algorithm 2 and follows the
same outline as was presented in our earlier work.

Algorithm 2 Scan with range predicate returning index
vector
1: parallel shift (min,min,min,min,min,min,min,min)

by (s0, ..., s7), store in min
2: parallel shift (max,max,max,max,max,max,max,max)

by (s0, ..., s7), store in max
3: set k to 0
4: for i from 0 to max index/128 do
5: for j from 0 to 15 do
6: parallel load v from input[k*16 + j*b]
7: pshuffle v using shuffle mask(m0, ...,m31)
8: parallel compare v with (min, max), store in t
9: convert t to a vector of hit indices h

10: store h in output[i ∗ 16 + j]
11: end for
12: increase k by b
13: end for

Lines 4 to 7 correspond to the first part of the unpacking
algorithm 1. However, the shifting inside the loop can be
avoided by shifting the lower and upper limit min and max
before the loop (lines 1 and 2), and then comparing the
shifted range in line 8. Unfortunately, step 9 cannot be
implemented with Intel AVX2. We therefore extract and
store the indices individually.

Similarly to the unpacking algorithm, NoAlign, Opti-
mizeAlign, and Broadcast optimizations apply. Never-
theless, the shuffle and shift masks are different, as the only
restriction we have for alignment is the fact that the com-
parison instructions are designed for integers while we use
unsigned integers. Therefore, it is important for the correct-
ness of the comparisons to always keep the most significant
bit of a double-word to zero. In other words, the shuffle op-
eration must avoid the most significant bit for the evaluation
of an arithmetic predicate.

Moreover, this algorithm allows for another optimization:

TestZ uses vptest instruction to test whether the compar-
ison result is null (i.e., no hits). If the test succeeds,
it continues to the next iteration without executing
line 9 of the algorithm. Since this variant of the scan
is typically used for searches with low selectivity, this
situation often occurs in practice.

3.3 Range Predicate with Bit Vector Result
The second variant of the scan algorithm handles the com-

mon operation of a range search returning the result in form
of a bit-vector. It takes a range min and max as a predicate
and yields a bit-vector where bits set to 1 are hits and the
bit position corresponds to the index position of the code-
word that was hit. The general scheme follows the same
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Figure 6: Core steps of the range scan algorithm
on a 20 bit-case example.

outline as was presented in our earlier work [26]: A formal
description is given as Algorithm 3. The only difference to
Algorithm 2 is the processing of the result. Instead of a list
of indexes, a bit-vector must be generated. The previous
steps of shuffling the entries and evaluating the range pred-
icate stay the same. Figure 6 illustrates the construction of
a bit-vector as the last step at the example of bit case 20.
Again, the same ideas apply to the other bitcases.

Algorithm 3 Range scan with bit vector result

1: parallel shift (min,min,min,min,min,min,min,min)
by (s0, ..., s7), store in min

2: parallel shift (max,max,max,max,max,max,max,max)
by (s0, ..., s7), store in max

3: set k to 0
4: for i from 0 to max index/128 do
5: for j from 0 to 15 do
6: parallel load v from input[k ∗ 16 + j ∗ b]
7: shuffle v using shuffle mask(m0, ...,m31)
8: parallel compare v with (min, max), store in t
9: convert t to 8-bit integer r

10: store r in output[i ∗ 16 + j]
11: end for
12: increase k by b
13: end for

Similarly to the decompression algorithm, the optimiza-
tion of individual bit-cases can result in significant perfor-
mance improvements. NoAlign, OptimizeAlign, and Broad-
cast introduced earlier for the decompression algorithm also
apply for the scan with range predicate algorithm, but with
different masks and less instructions, as we do not need to
byte-align the data. In addition, the following optimizations
apply:

Movemask: Step 9 can be executed with one instruction
that creates a mask from the most significant bit of
each 32-bit element in the AVX2 vector: vmovmskps.

Figure 7: Permutation trick to perform 32 parallel
comparisons for bit-cases 2 and 4.
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Figure 8: When an In-List predicate is given as a
bit-vector P , the scan operation must check for each
decompressed codeword t if the bit P [t] is set.

LogicCmp is an optimization for bit-case 1. It takes ad-
vantage of the fact that in bit-case 1, we have only
four possible ranges. Lines 7 to 10 are then effectively
replaced by either setting all bits to zero, to one, to
the bits of the column, or to the negated bits of the
column.

Scan32 enables 32 parallel comparisons for bit-cases 2 and
4. With a shuffle, a shift, and a blend, we move 32
codewords, one in each byte of the 256-bit vector. We
keep the initial order of the codewords. We use the
vpcmpgtb instruction to compare packed 8-bit integers.
Besides, we use vpmovmskb instruction to convert the
result to a 32-bit integer instead of an 8-bit. Figure 7 is
an example of how to set the data to enable 32 parallel
comparisons for bit-case 4.

Scan16: Similarly to Scan32, the optimization enables 16
parallel comparisons for bit-cases 3 to 10 and 12.

3.4 In-List Predicates
This is the most general variant of the scan algorithm

where the condition of the search is an arbitrary subset of
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the codeword domain. The in-list is represented as a bit-
vector where each bit corresponds to the value of its index.
A bit is set to 1 iff it is searched. In the following, we present
the algorithm producing a bit vector as result, but the same
ideas apply for the algorithm producing an index vector.
The outline of the scalar algorithm is as follows:

1. Compute the address of double-word that contains the
bit as addr := base + pos/32.

2. Load double-word B from memory at addr.

3. Compute the bit position inside B as p := pos%32.

4. Extract bit b from B by shifting B to the left by 31−p
bits and extracting the sign bit.

Since the second argument of the integer division and re-
mainder is a power of 2, it can be implemented efficiently
by a shift ing by 5 and an and ing with 31, which is a stan-
dard optimization for compilers. With these modifications,
the evaluation of the In-List predicate directly translates to
the pseudo code that is used in Algorithm 4.

Algorithm 4 Scan algorithm with In-List predicate

1: set k to 0
2: for i from 0 to max index/128 do
3: for j from 0 to 15 do
4: parallel load v from input[k ∗ 16 + j ∗ b]
5: shuffle v using shuffle mask(m0, ...,m31)
6: parallel shift v by (s0, ..., s7)
7: parallel and v by (a0, ..., a7)
8: parallel shift v by (5, ..., 5), store in offset
9: gather elements from P with indices offset, store

in B
10: parallel and v by (31, ..., 31), store in p
11: parallel substract p from 31, store in p
12: parallel shift B left by p bits
13: convert B to 8-bit integer r
14: store r in output[i ∗ 16 + j]
15: end for
16: increase k by b
17: end for

Apart from lines 8-12, the algorithm coincides with the
range scan in Algorithm 3. Lines 8-12 replace the evalua-
tion of the range predicate with the evaluation of the In-List
predicate as follows: In line 8, we compute the offset of the
address pos/64 as well as the shift values n := 31− pos%64
in lines 10-12. The loading from the bit-vector in line 9 re-
quires some extra handling in form of a gather instruction.
Normal load instructions for a vector register load a con-
secutive piece of memory into the register. In other words,
the data elements of the vector are filled with numbers that
reside next to each other from memory. This matches per-
fectly the usage when data is processed from an array or
matrix. However, it poses a severe problem for vectoriz-
ing table look-ups. For these scenarios, Intel AVX2 offers a
gather instructions, where each element is loaded according
to an index in a table.

Similarly to the previous algorithms, bit-case level opti-
mizations represent a significant performance boost. For
instance:

0

F E D C B A 9 8 7 6 5 4 3 2 1 0

127

Byte #

Src1

<addr> Src2

Dest

Bit #

v1

v2

v3

v0 <addr>

<addr+4>

<addr+8>

v2v3v1v2

2312

Figure 9: The gather instructions loads elements
from memory based on a base address and offsets
for each data element.

Permute replaces line 10 by a permute (vpermd) instruc-
tion on a 256-bit register that contains the bit-vector
predicate. This is true for the lower bit cases where
the predicate is not larger than 256 bits. In particular,
we use this optimization for bit cases 6, 7, and 8. We
also apply a similar optimization to bit cases 9 and 10,
where the predicate fits respectively into two and four
AVX vectors.

AvoidGather is illustrated in figure 10. It is applicable to
bit cases 2, 3, 4, and 5. This optimization relies on
the fact that the bit vector predicate fits into a 32-
bit word. Therefore, we set each 32-bit word of an
AVX vector to the value of the predicate. Then, we
convert each codeword from the loaded segment to a
32-bit vector where only one bit is set to 1. This bit’s
index corresponds to the initial codeword. We execute
a logical and on the constant and the converted vector.
We then compare equality between the resulting vector
and the converted vector which gives us the final result.

3.5 Summary
Table 1 summarizes which optimizations are used for ev-

ery bit case.

Bit-case Unpack Scan Range-to-BV Scan Range-to-IV Scan BV-to-BV

1 F ♣ # ♠ ♣ O #
2 F � H N � H # N � H ♠ N � H O #
3 � � H ♦ � H # ♦ � H ♠ ♦ � H O #
4 F � H N � H # N � H ♠ N � H O #
5 � � H ♦ � H # ♦ � H ♠ ♦ � H O #

6 and 7 � � H ♦ � H # ♦ � H ♠ ♦ � H ∞ #
8 � M ♦ � M # ♦ � ♠ ♦ � M ∞ #

9 and 10 � H ♦ H # ♦ H ♠ ♦ H ∞ #
11 H H # H ♠ H #
12 � H ♦ H # ♦ H ♠ ♦ H #
13 H H # H ♠ H #
14 H H # H ♠ H #
15 H H # H ♠ H #
16 � � M � M # � M ♠ � M #

17 to 23 H H # H ♠ H #
24 M M # M ♠ M #

25 to 31 H H # H ♠ H #
32 M M # M ♠ M #

F Unpack32 � Unpack16 � 16cvt32 ♠ TestZ N Scan32
♦ Scan16 � Broadcast ♣ LogicCmp M NoAlign H OptimizeAlign

O AvoidGather ∞ Permute # Movemask

Table 1: Summary of optimizations

4. EVALUATION
We now measure the scan performance with different pred-

icates and, where available, compare it with the performance
of implementations of previous publications.
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Figure 10: Avoiding the Gather instruction for
lower bit-cases. Illustrated example for bit-case 4.

Unless otherwise mentioned, all experiment were run on
an Intel c© CoreTM i5-4670T processor [12] (based on the ar-
chitecture codenamed Haswell) with a nominal clock speed
of 2.3 GHz, a maximal Turbo Frequency of 3.3 GHz, four
cores, and a 6MB of L3 cache. Our machine was equipped
with 6GB of main memory and runs on SLES 11.1 using
a Linux kernel 3.6.0-rc7. We use Intel Composer XE 2013
update 1 (ICC) as compiler for our routines and GCC 4.7.3
(GCC) for the others, which were the fastest compilers for
the respective routines 1. For the implementation of our al-
gorithms, we used intrinsics. This has the advantage we get
the full control over the instruction that are used, but te-
dious tasks like register assignment or instruction reordering
is left to the compiler.

We run our test on data that we generate uniformly at
random in order to model a hard scenario for routines de-
pending on the data. The only place where this is the case
is where the index vector result is produced. All other rou-
tines are completely free of conditional jumps and hence
do not depend on any data skew. In order to change the
selectivity of the range predicates, we change just the prob-
ability of the highest relevant bit and run the scan with the
range predicate [0, 2bit−1). We always give averages of 10
runs, each processing 228 codewords; if not otherwise men-
tioned, a run consists of processing the same 225 codewords
8 times. We use Intel Performance Counter Monitor (Intel
PCM) 2.5 [6] to measure cycles and nanoseconds and ob-
serve that the CPU always runs at its maximal frequency of
3.3 GHz. Since the two metrics have a constant ratio of 3.3,
our figures have two axes and show nanoseconds and cycles
in one plot.

1In other experiments shown in Appendix A, Lemire com-
piled with ICC was roughly 5% slower and AVX2-Scan
roughly 30% faster than compiled with GCC. SIMD-Scan
had the same performance with either one.
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Figure 11: Isolated unpacking costs of different
implementations.

In the following, we analyze the performance of the range
predicate scan with both index vector and bit vector result.
This is the most common predicate and we can compare
it with previous work. Furthermore, we can also compare
the impact of the output data format. As a particularly
hard example of vectorizable predicates, we also show ex-
periments with the In-List predicate as the most general
stateless predicate, but argue that equivalent or better per-
formance is easily achievable for simpler predicates. We also
show the pure unpack performance of our fall-back mecha-
nism for arbitrary predicates, which represent the base cost
of such a scan. Depending on the user-written predicate
code, additional costs applies obviously.

Each of these predicates is embedded in up to four scan
implementations: our previous SIMD-Scan [26] with addi-
tional optimizations based on SSE4, our new AVX2-Scan
based on the new Intel AVX2, Lemire, a reimplementation
of SIMD-Scan by Lemire and Boytsov [15] based on SSE4,
and Cache Ping. Cache Ping is a set of generated C
functions, one predicate type and bit case, “pinging” the
cache lines that any algorithms has to read from and write
to. It does not evaluate any predicate or even unpack the
codewords but preserves data dependencies (with cache line
granularity). Since it does the minimal data movement of
every algorithm, it models the memory bound part of scan-
ning and unpacking and serves as a comparison.

4.1 Unpacking Codewords
We start our analysis with completely unpacking small

arrays of 1024 codewords in order to compare the compu-
tational costs of unpacking. Both input and output reside
entirely in the fastest cache level, eliminating thus the ef-
fect of potentially slow memory. The results are shown in
Figure 11. As a first observation, the three routines SIMD-
Scan, AVX2-Scan, and Lemire can unpack almost all bit
cases in less than a cycle per codeword, but the exact num-
ber depends highly on the bit case. This is a consequence
of the fact, that every bit case is processed by its own algo-
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Figure 12: Unpacking costs of a full column-scan
without the evaluation of arbitrary user code, into a
buffer (solid markers) and into RAM (hollow mark-
ers).

rithm, and the respective sets of optimizations applied are
different. In particular the bit cases that are multiples of
eight are much easier to unpack, which results in consider-
ably lower unpacking time per codeword. AVX2-Scan is
consistently around 30% faster than SIMD-Scan and has
less hard cases, needing just about half a cycle for most
bit cases, since the more powerful instruction set gives the
opportunity for more and faster optimizations.

The experiments also show that Lemire’s implementa-
tion is reaching almost equivalent performance. Still, in 14
out of 32 bit cases, our updated routines are around 30%
faster. On the other hand, their implementation surpasses
our performance in 5 bit cases. This difference in the two
implementations shows the big influence of a careful imple-
mentation. In particular, the performance numbers in this
paper also reflect some optimizations of the implementation
of SIMD-Scan compared to our previous results [26].

4.2 Buffered Unpacking for Arbitrary Predi-
cates

We now analyze to what extent it is possible to achieve
this unpacking performance during a scan. To this aim, we
run a fall-back scan designed for arbitrary predicates with
an empty predicate, hence measuring the costs for mem-
ory transfer and unpacking. We use a buffer size of 1024
codewords, since this is the choice made in SAP HANA
database. We also experimented with other buffer sizes and
confirm that the current value provides a good trade-off be-
tween amortizing the costs for changing execution context
between unpacking and further processing and a small cache
footprint for the buffer, in particular if several columns are
unpacked at the same time.

The respective lower lines in Figure 12 show that SIMD-
Scan and Lemire have the same unpacking costs on the
entire column as in the pure in-cache scenario. This is also
true for AVX2-Scan for bit cases up to about 16. In the-
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Figure 13: Scanning costs with range predicate
producing an index vector for low selectivity (s =
1/214).

ses cases, the computations dominate the memory transfer
costs. For bit cases higher than 16, AVX2-Scan starts be-
ing memory bound, again emphasised by the fact that it has
the same performance as just pinging the same cache lines.
This is a hint that with current hardware, we should not use
more expensive data formats with higher compression.

The respective upper line of each algorithm in Figure 12
shows the costs of unbuffered unpacking, i.e., where the un-
packed column is materialized into RAM: they are consid-
erably higher and exactly the same for all algorithms, since
they are all dominated by the memory transfer costs. This
argument is strengthened by the fact that not even pinging
the cache lines is faster (see algorithm Cache Ping). In an-
other experiment not presented here, we found out that us-
ing non-temporal stores for writing directly into RAM with-
out going through the cache can lower the costs by roughly
factor two, but still leave the routines memory bound. The
memcpy used in bit case 32 of our routines achieves this per-
formance already.

4.3 Range Predicates
Next, we show the performance of a scan with range pred-

icate where an index vector of matching rows is produced.
The costs per codeword depend heavily on the selectivity of
the scan, since only indices of selected rows need to be com-
puted and written to memory. Figure 13 shows the costs
of a scan with low selectivity (s = 1/214), which is what
this scan variant is built for. For such a low selectivity, the
performance is very similar to unpacking: less than one cy-
cle per codeword for most bit cases for SIMD-Scan and
roughly 30% less for AVX2-Scan. Bit case 32 of SIMD-
Scan is in fact a scalar implementation, since without the
missing signed comparison in SSE, we would have to use
64 bit types, which operates on two times less codewords
per instruction. Both SIMD-Scan and AVX2-Scan would
benefit from a signed comparison instruction.

Figure 14 shows our experiments for the scan with range

9



1 4 8 12 16 20 24 28 32
0

0.5

1

1.5

2
[cycles/codeword]

bitcase

S
ca

n
co

st
s

SIMD-Scan

AVX2-Scan

0

0.2

0.4

0.6

[ns/codeword]

Figure 14: Scanning costs with range predicate
producing a bit vector.

predicate where a bit vector is produced as result. Unlike
the scan variant producing an index vector, its output size
does not depend on the number of matches, so its perfor-
mance is completely independent of the selectivity. As a
consequence, the performance is very similar to unpacking:
all bit cases have different costs, but most of them remain
below 1 cycle per codeword, and AVX2-Scan has roughly
30% lower costs than SIMD-Scan. Notice also that some
bit cases have lower costs than unpacking, since some of the
steps of unpacking can be merged or skipped.

These results contradict the findings of Li and Patel [18],
who also reimplemented our first version of SIMD-Scan. In
the absence of availability of their reimplementation, we can
only compare the numbers they report with the numbers we
reported [26] with the same predicate and on slightly older
hardware: While their reimplementation costs constantly 5
cycles per codeword, we needed around 1 cycle/codeword
for unpacking at the time 1. Two indications let us believe
that a suboptimal reimplementation is the explanation for
the performance difference of factor 5: First, manually opti-
mizing every bit case separately by intelligently combining
SIMD instructions should lead to different costs for each bit
case. Second, they write that they scan exactly four code-
words at a time, independently of the bit case, while we
showed in Section 3 that even in SIMD-Scan, we can scan
4, 8, 16, and even 128 comparisons at a time using smaller
data types, and double that in AVX2-Scan. We see this as
another argument for the importance of the optimizations
described earlier.

1This was not explicitly stated in the previous paper, but
could be deduced from the plots: Figure 11 gave an unpack
time of around 400ms for 1B codewords in most bit cases,
corresponding to 0.4ns/codeword. With a frequency of less
than 3.0GHz, this results in less than 1.2 cycles/codeword.
As mentioned at the time and as visible in our new ex-
periments, unpacking and range scan have very comparable
performances.
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Figure 15: Scanning costs with In-List predicate
producing a bit vector.

Their first alternative, BitWeaving/V, needs around 1
cycle per codeword for bit cases higher than 16 and as little
as to 0.1 cycles for lower bit cases and is therefor somewhat
faster than our SIMD-Scan. Their BitWeaving/H, which
as opposed to the other method also supports fast single
look-up, seems to have a very similar performance than our
SIMD-Scan or slightly worse in the higher bit cases.

4.4 In-List Predicates
Last but not least, we analyze the performance of a scan

with In-List predicate. The results of our experiments are
shown in Figure 15. We compare AVX2-Scan with a scalar
version, since we were not able to produce a faster version
based on SSE4. With the In-List predicate, the performance
depends on the size of the bit vector (which is 2b for bit case
b) and also on the data distribution of the column, since
there is a look-up into the predicate for each row. Since we
run on uniformly distributed data, we expect the plotted
costs to be close to an upper bound. For bit cases higher
than b = 21 and b = 26, the predicate is of size of 2bbit =
2b−3byte, which is larger than the L2 and L3 cache of our
machine respectively. As a consequence, the impact of cache
misses start to dominate to performance.

For the more relevant lower bit cases, the performance is
very appealing: Scalar can scan a codeword in less than 4
cycles and AVX2-Scan in less than 3. Thanks to the vector-
vector shift and gather instructions, AVX2-Scan even needs
less than 1 cycle for bit cases 1 to 8.

4.5 Summary
We now summarize our evaluation with a comparison of

the throughput of the scans presented above. In order to
group the performance of all bit cases of a certain scan,
we aggregate them into a box plot presented in Figure 16.
In this plot, the thick line inside of each box indicates the
median, the box itself indicates the first and third quartile,
and the whiskers indicate the minimum and maximum value
of the respective groups. As seen in the detailed analysis
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Figure 16: Scan throughput for different predi-
cates, output formats, and implementations. Each
box regroups the 32 bitcases of a variant.

before, most bit cases lie in the same ballpark, but some of
them are worse (usually high bit cases) and some of them
are better (small bit cases).

For our fall-back scan (with empty predicate, i.e., unpack-
ing) and for scans with range predicate producing either out-
put type, AVX2-Scan achieves a throughput of 6-8 billion
codewords/s for most bit cases. Unpack has a peak perfor-
mance of 10-11 billion codewords/s for bit cases 1 to 8 and
scanning even above 17 billion codewords/s for bit cases 1,
2, and 4. The scan with more complex predicates have also
a competitive performance: we can scan 1-3 billion code-
words/s with a bit-vector predicate. These performances
are roughly 30% higher than the respective equivalents of
SIMD-Scan, except for the scan with bit vector predicate,
where the improvement is even higher.

5. CONCLUSION AND OUTLOOK
We have presented a framework for the vectorized evalu-

ation of complex predicates in database column scans. We
have classified scan predicates into categories of different
complexity and have shown how to bring their evaluation
as close as possible to the compressed data. We gave many
details about the vectorization of unpacking and result ex-
traction with Intel AVX2, which are essential to improve our
implementation compared to prior work. In particular, we
presented a way to vectorize scan operations like the scan
with bit-vector predicate that seemed to exhibit only little
data parallelism. We conclude that our scan framework, in
particular the AVX2-Scan implementation, is an effective
means to improve scan performance. Since we do not change
the underlying data format, no other database component
is affected; in particular, fast single lookup performance is
not compromised.

We are expecting hardware vendors to further increase
the vector width and expressiveness of their instruction sets,
which might allow faster or higher compressed data formats.
In particular, Intel has recently released the description of
Intel AVX-512 [2]. In the context of bit-fields unpacking and
scans, the most notable additions are the following:

512bits: The register length will be extended to 512 bits.
All of the algorithms described in Section 3 can natu-
rally extended to the wider registers.

Mask registers will be added to allow the masking in vec-
tor registers to certain elements. Furthermore, the
mask registers will serve as the destination for vec-
tor comparisons. This simplifies the processing of bit-
vectors. In particular, the and operation for the inter-
val predicate as well as the movmask instruction for
bit-vector output can be completely eliminated.

Cross-lane shuffles: Instead of loading lanes individually,
it will be possible to use a single load and a shuffle.

Compress instruction: The compress instruction allows
to storing the a sub-set of the vector elements by a
given mask. Please note that this differs from a masked
move, where the elements are blended with the target.
As a consequence, the compress instructions allows an
efficient way to store the result of a scan as a list of
hits or indexes.

Unsigned comparison: The scan with interval predicate
requires some extra care with Intel AVX2 if the most-
significant bit is used. Using the unsigned comparison
in Intel AVX-256, this special handling can be avoided.

Intel AVX-512 will be first implemented in the future In-
tel Xeon Phi processor and coprocessor known by the code
name Knights Landing, and will also be supported by some
future Xeon processors scheduled to be introduced after
Knights Landing. Apart from Intel Xeon Phi coprocessors,
it will therefore be very interesting to compare this approach
with GPGPUs.
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APPENDIX
A. INFLUENCE OF THE COMPILER

1 4 8 12 16 20 24 28 32
0

0.5

1

1.5

2
[cycles/codeword]

bitcase

U
n
p
a
ck

co
st

s

AVX2-Scan

Lemire

0

0.2

0.4

0.6

[ns/codeword]

Figure 17: Pure unpacking costs of a full column-
scan, compiled with ICC (solid markers) and with
GCC (hollow markers).

Figure 17 shows an experiment justifying our choice to use
different compilers for different routines. It shows the same
experiment as Figure 12, but Lemire and AVX2-Scan are
compiled with GCC (solid markers) and ICC (hollow mark-
ers). Lemire compiled with GCC is roughly 5% faster than
compiled with ICC, while AVX2-Scan compiled with ICC
is roughly 30% faster than compiled with GCC, where the
latter even introduces a severe performance bug. Therefore
we use GCC for Lemire and ICC for AVX2-Scan.
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