
FBARC: I/O Asymmetry-Aware Buffer Replacement
Strategy

Paul Dubs #1, Ilia Petrov #2, Robert Gottstein #1, Alejandro Buchmann #1

#1Databases and Distributed Systems Group TU-Darmstadt, Germany, #2 Data Management Lab, Reutlingen University
#1{dubs | gottstein | buchmann}@dvs.tu-darmstadt.de, #2ilia.petrov@retulingen-university.de

ABSTRACT
Buffer Management is central to database systems; it mini-
mizes the access gap between memory and disk. Primary
criterion of most buffer management strategies is hitrate
maximization (based on recency, frequency). New storage
technologies exhibit characteristics such as read/write asym-
metry and low read latency. These have significant impact
on the buffer manager: due to asymmetry the cost of page
eviction may be several times higher than the cost of fetch-
ing a page. Hence buffer management strategies for modern
storage technologies must consider write-awareness and spa-
tial locality besides hitrate.

In this paper we introduce FBARC - a buffer manage-
ment strategy designed to address I/O asymmetry on Flash
devices. FBARC is based on ARC and extends it by a
write list utilizing the spatial locality of evicted pages to
produce semi-sequential write patterns. FBARC adds an
additional list to host dirty pages grouping them into fixed
regions called clusters based on their disk location. In com-
parison to LRU, CFLRU, CFDC, and FOR+, FBARC: (i)
addresses write-efficiency and endurance; (ii) offers com-
paratively high hitrate; (iii) is computationally-efficient and
uses static grid-based clustering of the page eviction list; (iv)
adapts to workload changes; (v) is scan-resistant. Our ex-
perimental evaluation compares FBARC against LRU, CFLRU,
CFDC, and FOR+ using trace-driven simulation, based on
standard benchmark traces (e.g. TPC-C, TPC-H).

1. INTRODUCTION
As a central component of database systems Buffer Man-

agement is not only instrumental to high performance query
processing, but also plays a critical role in transaction man-
agement. From an architectural perspective, it addresses the
task of minimizing the substantial access gap in the access
latencies of main memory and spinning disks. The access
gap is a technological property of traditional memory hierar-
chies: accessing data in a buffer resident page takes less than

CPU Cache
(L1, L2, L3)

2ns

10ns

100ns
RAM

1µs
10µs

read

write

read

25µs
80µs

5ms

write 500µs
800µs

Flash

HDD

NVRAM

A
cc

es
s

G
ap

Access
Gap

Symmetric Asymmetric,
Endurance

Figure 1: Access Gap in Evolving Memory Hierar-
chies

hundred nanoseconds whereas accessing disk-based data is
in the lower millisecond range (Fig. 1).

Traditional buffer management strategies would utilize
temporal locality of page accesses to increase the probability
of locating the requested pages in the buffer (hit-rate) and
minimize expensive disk accesses. Such strategies utilize two
criteria to select victim pages to be evicted from the buffer
once new ones are requested: recency and frequency. Since
the traditional technologies exhibit symmetric performance
(i.e. reads are as fast as writes), maximizing the hit-rate
thus minimizing disk accesses of whatever type is a suffi-
ciently general, single design criterion.

Over the last half decade new storage technologies (Flash,
Non-Volatile Memories) have emerged. These change the
memory hierarchy radically with their properties:

(i) Low access latencies (operation-specific) - orders of mag-
nitude lower than HDD latencies.

(ii) Asymmetry - Access latencies for read operations vary
from approx. 100 ns (PCM) to several microseconds
(Flash) [6]. Write operations, are at least an order of

1

magnitude slower, which gives rise to the term read-
write asymmetry. In addition, write latencies for ran-
dom and sequential vary significantly.

(iii) Mixed loads performance - The mixed-load performance
of Flash devices is sub-optimal compared to their pure
read or write performance.

(iv) Endurance - besides being slower repeated writes (105...108)
to the same memory location can cause the memory
cells to malfunction hence the notion of endurance or
longevity.

All these influence the design goals for a buffer manage-
ment strategy: (a) maximizing the hit-rate may yield sub-
optimal performance because page evictions may cause ex-
pensive writes; (b) due to the I/O asymmetry a trade off be-
tween hit-rate and eviction costs may result in lower overall
costs. In the face of the shrinking and operation dependent
access gap, we claim that addressing I/O asymmetry should
be considered as first-class criterion besides hit-rate. The
write-efficiency aspects of I/O asymmetry can be addressed
by utilizing spatial locality during the page eviction process.
Existing approaches rely on write region clustering, which
may result in high computational costs. The design tradeoff,
therefore, is to minimize eviction costs and reduce computa-
tional intensiveness for the sake of memory consumption and
lower hit-rate in order to minimize the overall performance
penalty. These are inline with the present hardware trends
of: increasing memory volumes and low read latencies.

On Flash devices, in addition, the I/O asymmetry is es-
pecially strong in the case of random writes [5]. These are
one to two orders of magnitude slower than random and se-
quential reads respectively [5]. In addition these have long-
term effects on performance and endurance. This makes it
important to perform sequential or semi-sequential writes.
Our initial experiments indicate that when a set of random
write I/O requests is concentrated on a relatively small re-
gion then they are performed nearly as fast as sequential
requests. This effect is also studied in [3]. This observation
affects the way spatial locality can be addressed, especially
the choice of the clustering algorithm (Section 3). By static
clustering the set of dirty pages, the pages for eviction can
be subdivided into smaller regions; even though those may
not be optimally filled and may result in random writes,
they will be executed as sequential ones. Hence the desired
tradeoff may be achieved at acceptable computational costs.
Append Log Storage is another approach that sequentializes
write requests and is studied in [13].

In this paper we introduce FBARC (Flash-Based-ARC)
- a buffer management strategy designed to address I/O
asymmetry on Flash devices. FBARC is based on ARC [22]
and extends it by a write list utilizing the spatial locality of
evicted pages to produce semi-sequential write patterns. In
recent years several similar strategies have been proposed:
CFLRU [25], CFDC [24] CASA [23], FOR/FOR+ [21], [18].
In comparison, FBARC:

• addresses write-efficiency and endurance

• offers comparatively high hitrate

• is computationally-efficient and uses static grid-based
clustering of the page eviction list

• adapts to workload changes

• is scan-resistant - a property inherited from ARC

The contributions of the present paper are as follows. We
introduce the FBARC buffer eviction strategy and discuss
its algorithm and design principles. As part of our ex-
perimental evaluation we compare FBARC against, LRU,
CFLRU, CFDC, and FOR+. Our experiments rely on trace-
driven simulation, utilizing TPC-C, TPC-H and pgBench
traces. The results indicate that FBARC outperforms them
by between 7% and 11%. FBARC achieves similar hitrate
and is less computationally-intensive (up to 2.5x). FBARC
is scan resistant, exhibits comparatively low I/O times and
asymmetry friendly I/O behavior.

The paper is organized as follows: in Section 2 we discuss
related approaches. In section 3 we describe the FBARC
design principles and algorithm. Section 4 focuses on the
experimental design and setup as well as the trace descrip-
tion and simulation. The experimental results are discussed
in Section 5.

2. RELATED WORK
Database buffer management is a traditionally well-studied

field; a broad overview is provided in [10]. We distinguish
between general purpose (FIFO, LRU [8], ARC [22]) and
special purpose algorithms. The special purpose algorithms
can be further sub-divided into: (i) embedded [20, 16]; (ii)
clustering [24, 25, 15]; (iii) page state [21, 18, 17, 25] and;
(iv) persistent buffer extensions [9, 4, 19].

General purpose cache replacement algorithms usually can
be used at any layer in the memory hierarchy. They, how-
ever, do not utilize special system knowledge to speed up
accesses. Special purpose algorithms on the other hand are
designed to use system information and around restrictions
of the respective target area. Embedded algorithms are de-
signed to use low-level system information for devices with
limited computational resources. An elevator algorithm for
example needs to know where the disk head is positioned at
the moment to decide which block to access next, or an FTL
knows if a write will need a full merge or a switch merge. A
clustering algorithm targets the spatial locality by grouping
dirty in-buffer pages into clusters and making the eviction
decision based on a composite per-cluster score. An algo-
rithm that uses the page state in its decision which page to
evict can adapt itself to different kinds of access. That way
it can address the read/write asymmetry on Flash media.

CFLRU [25], CFDC [24] and FOR/FOR+ [21] are cache
replacement strategies that fall in the class of page state
dependent replacement algorithms.

CFLRU [25] is a very light weight extension of the tradi-
tional LRU algorithm. It prioritizes dirty pages over clean
pages by replacing clean pages at the LRU end of the LRU
stack first (the so called priority region). This behavior may
be suboptimal in respect to the following reasons. Firstly,
the priority region tends to fill up with dirty pages, and
thus the constant eviction victim selection runtime of LRU
degrades to a linear run time based on the size of the pri-
ority region. Secondly, it affects the hitrate substantially
since clean pages are evicted as soon as they enter the prior-
ity region, thus effectively lowering the cache size for clean
pages. While the size of the priority region can be dynamic
it needs a tuning parameter for the cost of a write or, if the
priority region is static, it needs a well chosen size based on

2

the workload and thus replacing one tuning parameter with
another.

CFDC [24] improves upon CFLRU in two ways. It still
divides the cache into a work region and a priority region,
but it further sub-divides the priority region into a clean
and a dirty region. This way it overcomes the search-for-
clean-pages problem and allows for a constant search time.
In addition, CFDC clusters the dirty page priority region
based on the spatial locality of the pages. It still evicts clean
pages first, but if there are none then the oldest page from
the cluster with the least priority will be evicted and the
priority for this cluster is set to zero until it is completely
evicted. The priority is computed on every change of the
priority region for all clusters and is based on the temporal
and spatial locality of the pages within the cluster. This
causes CFDC to be very computationally intensive.

The FOR [21] algorithm approaches the problem from a
different perspective. It classifies pages according to two
operations: the last completed and the currently executing.
Using the resulting ’interoperation distance’ it can recognize
a hot page even if it was already evicted, and thus can retain
it longer when it is requested again. This approach requires
that two data points (last read and last write) are saved
for every accessed page over its whole life. Additionally, ev-
ery operation has to be recorded, i.e. every pin and every
dirty flagging has to change the possibly very long operation
list. To overcome these issues the authors introduce FOR+
which tries to approximate the interoperation distance based
on the currently cached pages. This approximation works
by dividing the LRU stack into a hot and cold region and
assigning page weights based on region membership. How-
ever, as FOR/FOR+ are built on an LRU basis there may be
scan resistance issues. Furthermore, both FOR and FOR+
need carefully chosen cost estimation for reads and writes
and FOR+ needs another tuning parameter for the size of
its cold page index.

The DULO [14] cache replacement algorithm tries to com-
bine both the temporal and the spatial locality on top of a
LRU stack. It was designed for rotating disks and thus tries
to reduce the amount of random accesses in favor of sequen-
tial prefetches. It divides the LRU stack into three parts:
the working area at the MRU end which consists of single
pages, the fixed size sequencing bank and the sequential area
at the LRU end which consists of sequential page sequences.
The sequencing bank is used to create sequences of pages
that can be evicted at the same time and can be read in
later with the help of prefetching. To reduce the sequencing
cost DULO uses the CLOCK algorithm, which allows it to
do the sequencing only when an eviction is needed instead
of doing it on every access that causes the LRU stack to
change. At eviction time DULO then evicts a complete se-
quence of pages from the LRU end. This works well on a
system that uses a lot of sequential read accesses, but as
prefetching does not work for writes it is difficult to achieve
write awareness. On flash based storage DULO is not as
efficient, as random reads are not much slower than sequen-
tial reads. Although FBARC takes a different approach, it
utilizes a CLOCK derived algorithm for cluster selection.

BPLRU [20] is an embedded device cache level replace-
ment algorithm. It works on a block level and targets only
the write buffer on a flash device assuming a log-block FTL
[7]. As all its pages are dirty and ready to be written at any
time it doesn’t have to keep any “clean”-hitrates high. As

T1

B1

Recency

T2

B2

Frequency

T3

B3

Spatial

Locality

FBARC

L3L2L1

ARC

Figure 2: List organization of FBARC

any hit on a page within a block moves the complete block
to the MRU position this can lead to a decreased hitrate
as older pages are kept longer in the cache. As a protection
against cache flushing it uses a sequential write detection al-
gorithm, which puts sequentially accessed blocks directly to
the LRU position. When a block has to be evicted BPLRU
attempts to perform a switch merge and pads the block
if needed, which reduces the amount of the expensive full
merges. Another embedded replacement algorithm that re-
lies on spatial locality and focuses on write caches is WOW
[12].

In brief, FBARC is a special purpose, clustering buffer
management algorithm, which partly uses page state infor-
mation. FBARC relies on ARC as a general purpose algo-
rithm. It features a distinction between recency and fre-
quency and can automatically adapt to workload changes.
Next, we introduce the FBARC algorithm.

3. FBARC
FBARC is an extension of ARC. Both strategies employ

multiple LRU lists to organize the buffer space (Fig. 2).
ARC [22] organizes recently accessed pages in an LRU list
L1; and frequently accessed pages in a another list L2. Both
L1 and L2 are subdivided into two further lists - L1 into T1
and B1; L2 into T2 and B2. The T-lists (T1 and T2) manage
the available buffer frames; the sum of their sizes equals the
total number of buffer frames available - c. The B-lists (B1
and B2) are virtual lists, containing metadata about pages
which were evicted from the respective T-lists. The B-lists
contain in total another - c page metadata entries; thus the
total page metadata maintained by ARC is 2c entries. In
addition, ARC balances the sizes of L1 and L2 to realize
the tradeoff between recency and frequency and ultimately
adapt to workload changes. We return to this point later in
the section with a detailed discussion.

FBARC extends ARC with an additional list (L3) to ad-
dress spatial locality (Fig. 2). Like L1 and L2 it is sub-
divided into T3 and B3. Unlike T1 and T2, T3 manages
clusters of dirty pages. A cluster contains merely a list of
pages and a reference counter. Alternatively, B3 is LRU-
organized and contains the metadata for single uncached
pages. FBARC uses a static clustering algorithm (called
GRID clustering). We logically divide the disk space into
static equally-sized regions called clusters. As discussed in
Section 1: even though the clusters can be ’porously’ filled

3

with dirty pages, which will result in random writes requests,
they will be performed as if they were sequential since the
page addresses are concentrated on a relatively small region
(cluster). The cluster size is a tunable parameter, specific
to the concrete Flash device. The proposed GRID cluster-
ing represents a tradeoff between efficiency, simplicity and
acceptable computational intensiveness.

In the following we introduce the algorithm in detail. As-
sume that the cache is completely filled and a page is re-
quested. First, FBARC verifies whether the page has al-
ready been processed by locating the metadata for that page
(Alg. 1, line 2) in L1, L2 or L3. If it finds it, it checks if the
page is cached (Alg. 1, line 3). If so, the page is moved to the
MRU position of T2 and the page is returned. If the page
was not cached, but the metadata was found, then FBARC
uses this information to adjust the balance between T1, T2
and T3 (Alg. 1, lines 6-16) and then invokes the eviction
process (Alg. 1, lines 17, 18). The page is then placed at
the MRU position of T2 and the page is returned (Alg. 1,
line 19).

How the balance between T1, T2 and T3 is changed de-
pends on where the metadata hit occurred. If the metadata
was located in B1, then the target size for T1 is increased by
one, if it was in B3 then the target size for T3 is increased
by one. If it was in B2 then the logical target size for T2
is increased by one. T2 has only a logical target size, as
it is the result of c − ts1 − ts3. So if the target size of T2
has to grow, another target size has to shrink. To decide
which target size has to shrink we compare them with each
other (Alg. 1, line 9), and then shrink the bigger one. This
protects the balance in cases where many hits in B2 would
otherwise skew it too fast.

The target size is a soft upper bound under which the lists
should stay. If a list is bigger than its target size then the
next eviction victim will be chosen from that list.

If the page is unknown (i.e. the look up did not return any
metadata) then FBARC might have to evict an additional
B-list page. This housekeeping ensures that the complete
historic view stays confined within 3c. First, FBARC checks
if L1 (i.e. T1+B1) is the same size as the cache size and
whether there is at least one entry in B1 (Alg. 1, line 25).
If this is the case then the LRU entry of B1 is removed.
Otherwise, it goes on to check whether the total size of all
lists (L1, L2 and L3) exceeds the cache size (Alg. 1, line 27).
It then checks if L1+L2 is bigger than or equal to 2c (Alg.
1, line 28). If so, the LRU entry of B2 is removed, otherwise
FBARC checks if the total size of all lists (L1+L2+L3) is
equal to 3c and in that case removes the LRU entry of B3
(Alg. 1, line 30).

This confines the maximum size of L1 to the cache size,
the maximum size of L2 to twice the cache size and the
maximum size of L3 to three times the cache size. The
reasoning behind this is that L1 represents the recency and
an excessively large recency list would contain pages that
are not recent any more. L2 on the other hand represents
frequency, and the information that a page was frequently
accessed in the past is useful even if it was not that recent.
Similarly, the information that a page was written to in the
past is even more useful, as we try to retain dirty pages
longer to reduce the amount of write I/Os that a buffer
management strategy produces.

After the housekeeping is done, the eviction process is
invoked (Alg. 1, line 34). The new page is read in, placed at

the MRU position of T1 and returned (Alg. 1, lines 36-39).

Algorithm 1 FBARC: Get Procedure

1: procedure Get(x)
2: if x ∈ buffers then
3: if x.origin ∈ {t1, t2, t3} then . Cache Hit
4: MoveToMru(t2, x)
5: else . Cache Miss, Hit in History
6: if x.origin = b1 then
7: ts1 ← max(c, ts1 + 1)
8: else if x.origin = b2 then
9: if |ts1| ≥ |ts3| then

10: ts1 ← min(0, ts1 − 1)
11: else
12: ts3 ← min(0, ts3 − 1)
13: end if
14: else if x.origin = b3 then
15: ts3 ← max(c, ts3 + 1)
16: end if
17: evict(x)
18: buffers[x]← readIn(x)
19: moveToMru(t2, x)
20: end if
21: else . Page is unknown
22: if |t1| = c then
23: evictLru(t1) . instead of calling evict
24: else . Housekeeping
25: if |l1| = c then
26: removeLru(b1)
27: else if |l1|+ |l2|+ |l3| ≥ c then
28: if |l1|+ |l2| ≥ 2c then
29: removeLru(b2)
30: else if |l1|+ |l2|+ |l3| = 3c then
31: removeLru(b3)
32: end if
33: end if
34: evict(x)
35: end if
36: buffers[x]← readIn(x)
37: moveToMru(t1, x)
38: end if
39: return buffers[x]
40: end procedure

The eviction process first checks if a page has to be evicted
at all (Alg. 2, line 2), and if so FBARC continuously evicts
as many pages from different source candidates (lists) as
needed to free at least one buffer slot. The source selection
for eviction candidate is made based on the current and
target size of all lists, and on the metadata (if present) of
the requested page. First, it checks if T1 is too big (Alg. 2,
line 3), then it checks if T3 is too big (Alg. 2, line 5), and
if this is also not the case, then it just selects the biggest of
all three as the source.

If the eviction source candidate is T1 or T2 then FBARC
just tries to evict the page at the LRU position (Alg. 3, line
5). If that page is clean, then the buffer for it is cleaned,
and its metadata is moved to the corresponding bottom list
(Alg. 3, lines 9, 10). If it is dirty it will be added to T3
(Alg. 4) and the eviction process is restarted (Alg. 2, line
2) as the dirty page was not written out, and thus no free
place was created yet. If the source is T3, then a special
eviction is started (Alg. 5).

4

Algorithm 2 FBARC: Eviction

1: procedure evict(x)
2: while |buffers| = c do
3: if |t1| > 0 ∧ (|t1| > ts1 ∨ (x ∈ b2 ∧ |t1| = ts1))

then
4: source← t1
5: else if |t3| > 0∧(|t3| > ts3∨(x ∈ b2∧|t3| = ts3))

then
6: source← t3
7: else
8: source←max(t1, t2, t3)
9: end if

10: evictLru(source,x)
11: end while
12: end procedure

Algorithm 3 FBARC: Eviction of LRU for l1 and l2

1: procedure evictLru(source, x)
2: if source = t3 then
3: evictFromT3(nil)
4: else
5: lru←removeLru(source)
6: if lru.dirty then
7: addToT3(lru)
8: else
9: remove(buffers[lru])

10: moveToMru(source.history, lru)
11: end if
12: end if
13: end procedure

When a page is added to T3, FBARC calculates its cluster
id based on the page number and a given cluster size (Alg.
4, line 2). If a cluster with that cluster id already exists,
then the page is added to it and its reference counter is
incremented (Alg. 4, lines 10, 5). If there is no pre-existing
cluster with that id, then a new one is created and added to
the cluster hash map (Alg. 4, lines 7, 8).

Algorithm 4 FBARC: Add Page to t3

1: procedure AddToT3(x)
2: clusterId← page/clusterSize
3: if clusterId ∈ clusters then
4: cluster ← clusters[clusterId]
5: x.cluster.refCount+ +
6: else
7: cluster ← new Cluster()
8: cluster[clusterId] = cluster
9: end if

10: cluster.pages.append(x)
11: end procedure

There are two reasons for a page to leave T3. The first
is that the page was hit by an access and is moved to T2
(Alg. 1, line 4). In that case FBARC removes the page from
its cluster and increases its reference count by one (Alg. 5,
lines 2, 3, 7). The reasoning behind this decision is that
the page might come back into the cluster if it stays long
enough. If the cluster is empty after this operation, then the
cluster is removed (Alg. 5, lines 4, 5). The second reason
is that T3 was selected as a source in the eviction process.

In that case FBARC estimates the eviction cost for each
cluster (clusterCost) and selects the cluster with the lowest
cost as the victim (Alg. 5, lines 10, 11).

The cost is estimated by the reference count and the
amount of pages that are in the cluster. Thus a cluster
with a low reference count and a lot of pages is more likely
to be replaced then a cluster with the same reference count
and only a few pages. This allows a cluster with only a few
pages to live longer and thus gives it a chance to accumu-
late more pages. A selection solely based on the cluster size
is insufficient, since then very small clusters could block a
buffer slot for a long time.

After the victim cluster is chosen, the reference count of
all other clusters is decreased by the victims reference count
(Alg. 5, line 13). This is mainly to keep the reference count
low such that inactive clusters that once had a high activity
can be evicted sooner. The pages of the victim cluster are
then written in sequential order to the storage and added to
the MRU position of B3.

Algorithm 5 FBARC: Evict Page from t3

1: procedure EvictFromT3(x)
2: if x 6= nil then
3: x.cluster.pages.remove(x)
4: if |x.cluster.pages| = 0 then
5: clusters.remove(x.cluster)
6: else
7: x.cluster.refCount+ +
8: end if
9: else

10: clusterCost← λx← (x.refCount,−|x.pages|)
11: bestCluster ←min(clusters, key = clusterCost)
12: for all cluster ∈ clusters do
13: cluster.refCount− = bestCluster.refCount
14: end for
15: bestCluster.pages.sort()
16: for all page ∈ bestCluster do
17: writeOut(page)
18: MoveToMru(b3,page)
19: end for
20: clusters.remove(bestCluster)
21: end if
22: end procedure

4. EXPERIMENTAL ANALYSIS

4.1 Experiments
We experimentally evaluated the performance of FBARC,

comparing it against a number of different buffer manage-
ment algorithms (ARC, FOR+, LRU, CFLRU, CFDC) un-
der realistic workloads (TPC-C, TPC-H, pgbench) in dif-
ferent scenarios. We implemented a simulation framework,
hosting and executing the set of buffer management strate-
gies. An overview of the trace-driven simulation process is
provided in Fig. 3. It comprises three phases, which are de-
scribed in detail in the following sections: (i) Recording raw
traces for different DB workloads (Sect. 4.2.1, 4.2.2); (ii)
simulation of the eviction policies and generation of block
access traces (Sect. 4.2.3); (iii) execution of the I/O traces
on a physical SSD using FIO (Sect. 4.2.4).

5

Linux

Systemtap

DBT2 – TPC-C

DBT3 – TPC-H

pgBench

Raw

Traces

Simulator FIO

SSD /

HDD

Executor

Transaction

Manager

Buffer

Manager

Storage

Manager

ARC

LRU

CFLRU

CFDC

FOR+

FBARC

ARC

LRU

CFLRU

CFDC

FOR+

FBARC

PostgreSQL

Synchronous Writer

Trace Recording Simulation I/O Behavior

Figure 3: Simulation Process

SSD
Intel X25-E/64GB

HDD
Hitachi HDS72161

Blocksize 4 KB

Avg[µs] Avg[ms]

Sequential Read 53 0.133

Sequential Write 59 0.168
Random Read 167 10.8

Random Write 435 5.6

Figure 4: I/O latencies 4KB

With this setup we are able to study (i) different aspects
of spatial and temporal locality, e.g. hitrate and quality
of the clustering algorithm; (ii) the computational inten-
siveness and the I/O behavior; as well as (iii) various ad-
ditional aspects of the buffer management algorithms, e.g.
scan-resistance or workload adaptation, in a controlled en-
vironment under repeatable conditions and realistic work-
loads. For fair performance evaluation we assign equal total
amount of memory to all compared algorithms (unless ex-
plicitly stated otherwise).

The following system was used to perform the experimen-
tal analysis: 4 GB RAM, Intel Core 2 Duo 3 GHz running
under Linux (kernel 2.6.41). In addition, we used an In-
tel X25-E/64GB enterprise SSD and a Hitachi HDS72161
7200RPM SATA2 320GB HDD; the latencies of both drives
are listed in Fig. 4.

4.2 Instrumentation

4.2.1 Raw Traces
To ensure repeatable experiments and comparable exper-

imental results under realistic workloads we record traces of
PostgreSQL buffer manager method calls. Probing points
were set on buffer methods fetching a page as well as those
marking a buffer dirty within PostgreSQL’s bufmgr.c. We
used a Fedora Linux (kernel 2.6.41) with the Systemtap ex-
tension (translator 1.6; driver 0.152) to record the trace. By
setting probing points accordingly (“prior to the buffer man-
ager”, Fig. 3), we guarantee that the traces record the real
database behavior for the respective OLTP or OLAP work-
load, and eliminate the influence of PostgreSQL’s eviction
policy and storage manager. These are simulated for each

implemented strategy by the simulation framework (Sec-
tions 4.2.3 and 4.2.4)

4.2.2 Workload and Trace Characterization
An out of the box PostgreSQL (version 9.1.1) was instru-

mented for OLTP and OLAP workloads. Both types of
workloads are considered since they stress different aspects
of a buffer management strategy, and target asymmetry dif-
ferently.

As an OLTP benchmark we used DBT2 [1], an open
source implementation of the TPC-C benchmark and pg-
bench [11], which is the PostgreSQL internal benchmark.
DBT2 was instrumented with 200 Warehouses (nominal DB
size approx. 20GB), 10 database connections and 10 termi-
nals per warehouse. PostgreSQL uses 24 MB shared buffer
space. The other OLTP trace was recorded with pgbench,
which was instrumented with a scale factor of 600. As OLAP
load we used DBT3 [2], an open source implementation of
the TPC-H benchmark. PostgreSQL was instrumented with
scale factor 3 (nominal DB size approx. 13GB). The default
database page size of PostgreSQL (8KB) is used throughout
all benchmarks.

For the HDD benchmarks, we used scaled down traces
that have the same workload characteristics as the pgbench
and DBT2 traces. They are scaled down to one tenth of the
original trace size (nominal DB size approx. 2GB). Scaling
was performed to reduce the otherwise unacceptably long
experimental run-time.

All traces contain index and table accesses. The traces
have, however, been purged of PostgreSQL specific “service”
accesses to make them more comparable with traces that
would be gained by other methods.

Fig. 6, 7, 5, 8 show the access distribution per trace.
The dot-dashed blue and dotted green lines show the access
frequency per distinct page, while the dashed red and con-
tinuous yellow lines show the cumulative part of the total
accesses a distinct page receives. We have chosen a logarith-
mic scale for both the access frequency as well as the distinct
page count to emphasize the impact of the most frequently
accessed pages.

Trace H: DBT3 (TPC-H) is a typical OLAP benchmark,
and that is also reflected in its trace. As Fig. 8 shows
the low fraction of write accesses in the TPC-H throughput
test (temporary data) and as such we use this trace mostly
to investigate the effects of the write awareness extensions
on a mostly read only trace. Additionally, as can be seen
in the scatter diagram of this trace, it executes complex
queries that focus on only a few relations at a single time
(see appendix, Fig. 24), which also reflects as the plateaus
seen in Fig. 8.

Trace B: The pgbench trace shows a TPC-B like access
pattern. Even though some relations are accessed more fre-
quent than others, the access distribution within the rela-
tions themselves are very uniformly random (see appendix,
Fig. 23). That can also be observed in Fig. 5, as every
plateau represents a single relation, and all the pages within
it are equally often accessed. The writes are almost equally
distributed, but they happen ten times less often.

Trace C: For DBT2 we have recorded two traces. One, as
shown in Fig. 6, contains all accesses as they are defined in
the TPC-C specification (Trace C). The other, as shown in
Fig. 7 (Trace Cd), contains only accesses from the delivery
transaction. While trace C allows us to create a realistic

6

Cum. % of Writes Cum. % of All All AccessesWrite Accesses

100 101 102 103 104 105 106100

101

102

103

104

105

106

0

20

40

60

80

100

Page Number

N
um

be
r o

f D
B

 A
cc

es
se

s

C
D

F D
B

 A
ccesses

Figure 5: Trace B: pgBench - Scale Factor 600.

100 101 102 103 104 105 106100

101

102

103

104

105

106

0

20

40

60

80

100

Page Number

N
um

be
r o

f D
B

 A
cc

es
se

s

C
D

F D
B

 A
ccesses

Figure 6: Trace C: DBT2 (TPC-C) - 200 Ware-
houses.

100 101 102 103 104 105 106100

101

102

103

104

105

106

0

20

40

60

80

100

Page Number

N
um

be
r o

f D
B

 A
cc

es
se

s

C
D

F D
B

 A
ccesses

Figure 7: Trace Cd: DBT2 with 200 Warehouses.
Delivery transaction accesses.

100 101 102 103 104 105 106100

101

102

103

104

105

106

107

0

20

40

60

80

100

Page Number
N

um
be

r o
f D

B
 A

cc
es

se
s

C
D

F D
B

 A
ccesses

Figure 8: Trace H: DBT3 (TPC-H) - Scale Factor
3.

OLTP load, trace Cd allows us to have a write heavy OLTP-
like load.

Fig. 6 and 7 show that for both traces more then half of
all accesses are in a very narrow range of pages, as less then
10% of all pages account for more then 60% of all accesses.
The write requests though are a lot less concentrated in
both traces. Additionally the trace Cd shows a pattern of
concurrent semi sequential accesses over most of the involved
relations (see appendix, Fig. 22).

Trace SR: In order to stress the scan resistance of the dif-
ferent algorithms the framework simulates large sequential
accesses by introjecting ”parasites” into the OLTP traces.
After an amount of OLTP load a parasite is introjected.
The parasite covers (pollutes) the complete cache size and
accesses pages which are not covered by the main trace to
avoid any interference. After that the OLTP load is re-
sumed for n additional requests, where n is the cache size.
The Load is resumed for only n additional requests to high-
light the effect of the parasite. Each parasite is either write
only or read only (see Section 5.4).

4.2.3 Simulation and Metrics
The simulation framework applies the buffer eviction poli-

cies to the raw traces. The simulated eviction policies are:
(i) ARC; (ii) LRU; (iii) CFLRU with 10% (40%) priority re-
gion; (iv) CFDC with 10% (40%) priority region; (v) FOR+;
(vi) FBARC (different cluster sizes). The simulation results
are reported for the following metrics: (i) hitrate, (ii) CPU
time - measure of computational complexity (Section 5.1);
(iii) I/O time - measure of I/O performance (Section 5.2);
(iv) overall runtime - is an interleaving of CPU and I/O

time (Section 5.3).

4.2.4 I/O Trace
In the final step we benchmarked the traces on a phys-

ical SSD and HDD. The simulation framework translates
page addresses into block addresses generating an I/O trace,
which is used as an input for the FIO benchmark. FIO ac-
cesses the SSD/HDD as raw devices using direct I/O, and
thus bypasses the I/O cache. We used FIO for the follow-
ing reasons: a) guaranteed I/O behavior; b) controlled use
of I/O parallelism; c) reliable performance metrics (IOPS,
runtime). On SSD after each run of a single trace, we exe-
cuted a series of random write operations (approx. 30GB)
using FIO to avoid SSD state dependencies.

5. EXPERIMENTAL EVALUATION
The experiments of our experimental evaluation include:

(i) investigation of the hitrate and the computational inten-
siveness of all algorithms (Section 5.1); (ii) examination of
the I/O behavior of all buffer management strategies (Sec-
tion 5.2); as well as (iii) the investigation of the overall
time (Section 5.3). We investigate the influence of sequen-
tial operations on the algorithms (scan resistance), which
gains importance in database systems optimized for new
storage technologies or analytical processing (Section 5.4).
Finally, we compare the performance on HDDs to investi-
gate whether the algorithms have desirable features for a
general purpose algorithm. Since all those experiments vary
the cache size but keep the FBARC specific parameters, i.e.
cluster size constant, we additionally analyze the influence of

7

Trace B Trace C Trace H
1024 2048 4096 1024 2048 4096 1024 2048 4096 1024 2048 4096

Hitrate [%] LRU 90.26 91.40 92.29 78.68 81.55 83.77 76.53 79.06 79.38 90.02 91.12 92.63
ARC 89.91 91.29 92.33 78.60 81.06 83.24 76.54 78.98 79.09 89.78 91.07 92.53
FBARC 88.39 90.43 92.11 77.68 81.17 83.82 73.02 78.40 79.40 89.88 91.06 92.46
CFLRU 10% 90.13 91.24 92.20 78.48 81.40 83.60 76.19 79.08 79.38 89.92 91.07 92.57
CFLRU 40% 89.69 90.63 91.73 77.25 80.64 82.88 74.02 78.56 79.42 89.44 90.81 92.40
CFDC 10% 90.10 91.24 92.20 78.15 81.21 83.50 75.67 79.06 79.39 89.90 91.05 92.57
CFDC 40% 89.46 90.58 91.72 75.82 79.74 82.34 72.20 78.18 79.66 89.34 90.72 92.38
FOR+ 90.24 91.31 92.25 78.38 81.53 83.49 74.66 78.91 79.62 89.78 90.94 92.52

CPU [s] LRU 55.94 58.61 63.79 70.74 79.91 94.36 125.83 139.92 145.03 147.07 153.36 179.49
ARC 63.29 68.60 71.95 78.96 87.70 104.10 138.88 144.62 155.76 167.23 182.80 201.99
FBARC 81.79 84.18 96.54 152.08 177.51 199.36 293.10 333.55 317.33 188.06 195.14 213.23
CFLRU 10% 70.43 86.24 113.82 102.13 135.66 195.97 189.31 248.65 371.63 226.18 293.91 414.02
CFLRU 40% 111.30 160.82 254.13 209.25 315.38 533.11 391.34 593.98 1038.69 223.49 288.71 413.21
CFDC 10% 80.80 100.34 139.46 113.43 145.13 206.45 190.77 248.10 323.42 163.69 167.02 194.83
CFDC 40% 130.86 196.65 331.69 198.89 298.83 501.99 328.95 487.48 777.72 161.15 165.83 176.39
FOR+ 174.57 218.34 282.86 257.75 365.33 545.26 352.24 442.31 694.68 392.49 546.64 938.95

I/O [s] LRU 166.23 156.69 148.07 286.43 250.84 237.59 539.22 484.94 477.87 267.94 257.12 217.49
ARC 167.55 158.43 148.52 297.54 258.42 232.95 536.95 486.32 485.71 264.70 232.34 215.56
FBARC 180.44 164.19 148.93 299.94 255.12 224.01 581.28 478.80 441.83 263.56 232.03 216.34
CFLRU 10% 164.90 157.92 150.86 295.90 254.19 232.62 539.56 485.13 477.74 268.76 256.51 217.32
CFLRU 40% 171.79 162.42 153.66 297.26 257.29 233.63 566.00 492.66 476.41 269.35 256.42 217.49
CFDC 10% 167.52 158.64 150.75 301.62 257.59 230.59 554.14 488.28 476.08 269.22 256.74 217.77
CFDC 40% 173.26 161.02 154.88 329.66 280.03 247.45 613.08 504.01 471.26 268.43 255.33 217.06
FOR+ 164.33 155.48 149.41 292.92 255.91 232.48 559.94 490.47 474.07 268.73 256.54 216.55

Combined[s] LRU 175.61 166.45 160.18 324.99 288.70 259.57 570.74 516.32 505.07 277.59 265.47 267.89
ARC 180.16 167.28 159.38 327.83 293.85 264.74 571.20 518.18 513.92 275.08 273.24 284.83
FBARC 191.48 172.92 160.94 324.19 278.64 245.99 607.10 495.23 456.05 278.14 278.72 292.41
CFLRU 10% 177.84 167.41 156.95 322.06 285.56 254.51 567.89 509.35 494.43 290.39 321.26 426.94
CFLRU 40% 179.41 179.68 261.75 326.04 340.06 535.93 583.95 620.08 1048.52 290.96 324.15 423.25
CFDC 10% 176.43 164.38 161.37 328.39 291.04 254.63 585.46 511.57 497.51 278.87 267.01 280.63
CFDC 40% 180.71 212.96 341.38 354.38 324.54 512.10 641.94 537.00 834.27 278.66 266.79 262.18
FOR+ 194.31 235.83 294.65 315.24 388.96 565.95 584.18 510.23 723.91 454.84 599.22 971.54

Trace Cd

Figure 9: Results for Hitrate, CPU, I/O and Overall Time. Columns indicate amount of pages in the cache
(1024 .. 4096). Charts covering specific aspects are presented in Fig. 9, 14, and 20.

the FBARC parameters in terms of the influence of the clus-
ter size on the computational complexity and I/O behavior
(Section 5.5). CFLRU and CFDC in special are analyzed
with two different priority queue sizes of 10% and 40%. All
results presented in this section are the average values of
three experimental runs (since the standard deviation was
consistently low we do not report it).

We have consolidated the results of all main experiments
into Fig. 9. This allows to easily compare the results of
different traces and see the influence of different factors on
the combined metric. The algorithms are sorted in the given
order, to allow for an easier comparison of FBARC with
ARC and LRU.

5.1 CPU Time
In this section we examine the computational complexity

(CPU time) and hitrate of each eviction policy, for different
traces and buffer/cache sizes (Fig. 9, rows 9-16, “CPU”).
CPU time measures the runtime required for each algorithm
to complete the respective trace under full CPU utilization.
It is an indication for the algorithm’s pure computational
complexity on the respective trace. I/O time and parallelism

are not present.
Here LRU naturally outperforms all other algorithms. For

small cache sizes the FBARC performance is comparable to
that of other strategies. With increasing cache size FBARC
has much better runtime than the other

For small cache sizes FBARC performs mostly compara-
ble to or slower than the other strategies, but as the cache
size increases that gap narrows. With increasing cache size
FBARC has much better runtime than the other strategies;
the highest difference is received on the largest buffer size.
While the hitrates for the different algorithms are compara-
ble and grow with the amount of cache used, the CPU times
differ significantly.

FOR+ exhibits the highest computational complexity of
all algorithms. It increases significantly with growing cache
sizes. CFDC exhibits the highest computational intensive-
ness of all clustering algorithms especially for larger cache
sizes. This is due to the employed clustering algorithm.
CFLRU and FBARC have similar complexities, with CFLRU
being better for smaller buffer sizes and FBARC taking lead
for larger buffer sizes. LRU and ARC are both basic algo-

8

1024 1536 2048 3072 4096 5120 6144 7168 8196 16392
0

50

100

150

200

250

300

LRU ARC FBARC CFLRU 10% CFDC 10%

Number of pages in cache

O
ve

rh
ea

d
[%

] c
om

pa
re

d
to

 L
R

U

Figure 10: Relative CPU overhead for varying num-
ber of pages in cache .

1024 2048 4096
LRU 6,485,952 5,613,128 4,938,152
ARC 6,511,440 5,761,776 5,098,056
FBARC 6,790,968 5,728,960 4,920,816
CFLRU 10% 6,549,112 5,657,208 4,988,896
CFLRU 40% 6,922,672 5,888,768 5,208,096
CFDC 10% 6,648,344 5,716,696 5,019,144
CFDC 40% 7,358,888 6,163,464 5,373,144
FOR+ 6,580,288 5,618,288 5,021,456

Figure 11: Read KB in trace C. Columns indicate
amount of pages in the cache (1024 .. 4096).

rithms and thus shine in this metric because they are write-
oblivious and do not have the respective complexity.

Upcoming NVM technologies are characterised by higher
asymmetry, smaller page sizes and hence yield higher CPU
overhead for T3 Maintenance. The relative CPU overhead
of FBARC compared to other strategies is (Fig. 10): (i)
smaller; (ii) it also grows slower for increasing number of
pages. In general, all clustering strategies are affected; to
attack the issue the ample computational resources of many
core CPUs need to be used.

5.2 I/O Time
In this section we report the I/O times for the investigated

replacement strategies for different loads and buffer cache
sizes. I/O time stands for the I/O time needed to write/read
evicted/requested pages for the respective raw (benchmark)
trace. The framework creates an I/O trace that corresponds
to the simulated eviction policy and is used as input for FIO
(Section 4.2.4). It is then executed with synchronous direct
I/O without I/O parallelism. The CPU time is minimal and
can therefore be neglected.

FBARC reads and writes faster than the other eviction
policies. The higher write rate of FBARC is the result of
the sequentialisation of random writes. It is significantly
faster to write a whole cluster of pages which reside in spatial
locality then writing in random. In addition, FBARC makes
better use of I/O parallelism of Flash devices.

The results also show that the preferred eviction of clean
pages leads to a higher value of read I/O (Fig. 11) and a
higher read IOPS, nevertheless the influence of the priori-

1024 2048 4096
LRU 3,168,016 2,908,216 2,691,712
ARC 3,135,872 2,880,960 2,687,672
FBARC 3,209,080 2,911,360 2,665,472
CFLRU 10% 3,123,896 2,878,440 2,674,600
CFLRU 40% 3,028,568 2,800,088 2,632,928
CFDC 10% 3,210,520 2,933,848 2,703,720
CFDC 40% 3,393,264 3,039,200 2,788,552
FOR+ 2,965,504 2,717,352 2,595,992

Figure 12: Written KB in trace C. Columns indicate
amount of pages in the cache (1024 .. 4096).

1024 2048 4096

-2

0

2

4

6

8
LRU FBARC CFLRU 10% CFDC 10%

Number of pages in the cache

%
 s

pe
ed

up

Figure 13: Overall speedup in percent compared to
ARC on trace C

tized eviction of clean data pages does not impact the hitrate
negatively, as the results of the CPU time tests show.

FOR+ shows the lowest amount of written bytes (Fig.
12). This is the result of its meta data use. It retains single
hot dirty pages longer in cache then any other algorithm,
due to its comparatively long write history list. Even though
FOR+ writes less than FBARC it is not faster per se since
the resulting write patterns lack spatial locality.

5.3 Overall Time
The overall time represents a combined metric unifying

the CPU time and I/O time. It interleaves the compu-
tational tasks of a buffer strategy with I/O time for page
fetch/eviction (Fig. 9, rows 25-32, “Combined”). The I/O
requests are executed as synchronous I/O: its blocking na-
ture guarantees that the complete I/O latency is accounted
for. Thus I/O parallelism and asynchronous I/O are not
present which represents the realistic worst case scenario.
(In commercial implementations I/O parallelism will be present
to varying degrees, increasing the performance.)

Fig. 9 (rows 25-32, “Combined”) depicts the overall time
of the algorithms under test and Fig. 13 and 14 depict the

1024 2048 4096

-10

-5

0

5

10

15
LRU FBARC CFLRU 10% CFDC 10%

Number of pages in the cache

%
 s

pe
ed

up

Figure 14: Overall speedup in percent compared to
ARC on trace Cd.

9

relative improvement over ARC on trace C and Cd. We
removed CFDC 40%, CFLRU 40% and FOR+ from those
charts, because of their significant computational overhead
(see also Fig. 9 (rows 13, 15, 16, “CPU”)).

FBARC works very well on trace C and gains up to 7%
speedup with a big cache size. On trace Cd FBARC can
get a speedup of up to 11% but it seems to struggle with
a smaller cache size. The performance lag comes mainly
from a comparatively low hitrate for that particular cache
size. Even though FBARC has a higher computational in-
tensiveness than some of the other strategies, its resulting
I/O behavior does reduce the overall time.

In trace H there were so few write requests, that the hi-
trate and computational overhead are the main source of
differences between the different strategies.

In trace B the very uniform random access seems to pro-
duce equally mostly unchanged results when compared to
LRU and ARC, thus none of the write aware strategies can
really improve over the basic strategies there.

5.4 Scan Resistance
Scan resistance is an important characteristic of buffer

management algorithms with view of new storage technolo-
gies and analytical loads and cache-awareness. At their core
both trends employ sequentializing write or read accesses,
and become increasingly wide-spread. Not every buffer man-
agement algorithm is able to handle such type of accesses
efficiently.

In order to stress the scan resistance of the different al-
gorithms the framework simulates large sequential accesses
by introjecting parasites into the OLTP traces. After an
amount of OLTP load a sequential parasite is introjected
and the scan resistance of the eviction policies examined.
The parasite covers (pollutes) the complete cache size and
accesses pages, which are not covered by the main trace to
avoid any interference. After that the OLTP load is re-
sumed. We employ both read and write parasite config-
urations to stress certain parts of the buffer management
algorithms.

We compare the hitrate of an eviction policy on a trace
without and with (a) a read parasite and (b) a write parasite
introjected. Our findings show that the smaller the cache
size the more likely the hitrate will drop on all strategies but
ARC and FBARC. FBARC is influenced by neither write
nor read parasites, while the other policies are significantly
influenced. FBARC, like ARC, uses the recency list to filter
out pages that are accessed only once, and thus a sequential
parasite can only pollute a relatively small part of the cache.
Even though a sequential write parasite can flush the T3 list,
it does not influence the hitrate in a significant way as these
pages are not frequently accessed. Additionally it will buffer
the write parasite and write it out sequentially.

CFLRU, CFDC and LRU lose more than 10% of hitrate
on smaller cache sizes while FOR+ looses a quarter of that.
LRU derivatives such as CFDC and CFLRU react differ-
ently to read and write parasites due to the specifuc opti-
mizations. As shown in Fig. 15 the effect of a write parasite
on hitrate is twice the effect of a read parasite. LRU does
not distinguish between reads and writes hence the identical
numbers. The identical hitrate reduction for write parasites
for CFDC and CFLRU can be easily explained with the
fact that the parasite pollutes the whole buffer cache, re-
gardless of the clustering algorithm and write optimization.

Hitrate [%] 128 256 512 1024 2048 128 256 512 1024 2048
ARC 87.89 90.23 91.70 92.92 93.12
ARC (Read) 87.89 90.63 91.70 92.92 93.09 0.00 0.39 0.00 0.00 -0.02
ARC (Write) 87.89 90.63 91.70 92.92 93.09 0.00 0.39 0.00 0.00 -0.02
CFDC 88.67 90.63 91.80 92.77 93.09
CFDC (Read) 80.08 83.20 85.94 88.62 90.14 8.59 7.42 5.86 4.15 2.95
CFDC (Write) 76.17 80.27 83.40 86.47 88.18 -12.50 -10.35 -8.40 -6.30 -4.91
CFLRU 88.67 90.63 91.80 92.77 93.12
CFLRU (Read) 81.25 84.38 87.89 89.84 90.14 -8.20 -6.25 -3.91 -2.98 -3.00
CFLRU (Write) 76.17 80.27 83.40 86.47 88.18 -13.28 -10.35 -8.40 -6.35 -4.96
FBARC 88.28 90.43 91.70 92.92 93.04
FBARC (Read) 87.89 90.43 91.60 92.92 92.92 -0.39 0.00 -0.10 0.00 -0.12
FBARC (Write) 88.28 90.43 91.70 92.92 92.94 0.00 0.00 0.00 0.00 -0.10
FOR+ 89.45 90.63 91.80 92.82 93.14
FOR+ (Read) 84.77 87.50 88.67 89.45 89.77 -4.69 -3.13 -3.13 -3.37 -3.37
FOR+ (Write) 85.55 87.50 88.67 89.45 89.79 -3.91 -3.13 -3.13 -3.37 -3.34
LRU 88.67 90.63 91.80 92.97 93.12
LRU (Read) 76.17 80.27 83.40 86.47 88.18 -12.50 -10.35 -8.40 -6.49 -4.93
LRU (Write) 76.17 80.27 83.40 86.47 88.18 -12.50 -10.35 -8.40 -6.49 -4.93

Figure 15: Influence of Scan Resistance. Absolute
Hitrate on the left, difference compared to baseline
on the right. Columns indicate amount of pages in
the cache (128 .. 2048).

1024 2048 4096
FBARC 83.82 83.83 83.85

Figure 16: Influence of cluster size on hitrate(trace
C). Columns indicate cluster size [pages] (1024 ..
4096)

The effect of read parasites on hitrate reduction of CFDC
and CLRU depends on the cache size. For smaller cache
sizes CFLRU exhibits smaller hitrate penalties, a fact that
is due to the way the balance between read and write regions
(Working/Clean-first region in CFLRU vs. Working/Prior-
ity region in CFDC) is being handled. FOR+ is not scan
resistant, it however shows smaller hitrate reductions than
LRU, since it uses additional information to keep hot pages
longer than previously unknown pages. As for FOR+ ,re-
gardless of all optimizations read and write parasites affect
its hitrate reduction to the same degree.

5.5 Influence of the FBARC Cluster Sizes
Throughout all of the above experiments we kept the clus-

ter size of FBARC (Section 3) constant. Since it accounts
for physical parameters of the Flash Device it is a tunable
parameter in FBARC. In this experiment we vary it from
1024 pages to 4096 pages, keeping the buffer size constant
4096 pages.

Fig. 16 shows that the cluster size has a marginal influence
on the hitrate. For most traces the hitrate is unaffected or
changes by less than 1%. Given a skewed workload where
dirty buffers in L3 (Fig. 2) are requested will result in a
cache hit under FBARC because of the CLOCK based clus-
ter management algorithm.

The cluster size has a significant impact on the overall
time (Fig. 17). The pages of the evicted cluster are writ-
ten out as semi-sequential writes and all I/O operations are
synchronous (Section 3, Alg. 5), which only confirms our
initial hypothesis. In addition larger cluster sizes reduce the

1024 2048 4096
FBARC 243.88 238.61 230.79

Figure 17: Influence of cluster size on overall time
(trace C). Columns indicate cluster size [pages]
(1024 .. 4096).

10

1024 2048 4096
FBARC 201.02 182.57 152.56

Figure 18: Influence of cluster size on cpu time
(trace C). Columns indicate cluster size [pages]
(1024 .. 4096).

128 256 512 1024 2048
LRU 4720.22 3959.84 3580.07 3219.36 2880.25
ARC 4691.32 4005.01 3625.47 3259.75 2900.58
FBARC 4740.55 3964.56 3568.04 3210.92 2863.26
CFLRU 10% 4762.38 3968.51 3578.98 3231.58 2895.06
CFLRU 40% 5062.04 4183.72 3665.22 3327.70 2981.58
CFDC 10% 4791.82 3975.31 3572.79 3196.70 2829.28
CFDC 40% 5106.15 4114.93 3568.73 3197.88 2815.65
FOR+ 4868.25 4034.39 3553.66 3263.65 2977.73

Figure 19: I/O Time [s] on HDD. Columns indicate
amount of pages in the cache (128 .. 2048).

amount of clusters managed by L3 and hence the computa-
tional complexity of FBARC (Fig. 18).

5.6 Behavior on HDD
In this section we evaluate how the different strategies

behave when they are tested on an HDD. It is favorable if
a special purpose algorithm performs well even in cases in
which it was not intended to be used. For this test we scaled
the used traces down to reduce the experimental run-time to
an acceptable range (also see section 4.2.2). For this reason
we have also included smaller cache sizes in the results.

Fig. 19 shows the overall time for the scaled down trace C
to complete. Fig. 20 shows the relative speedup or slowdown
compared to ARC. Most of the values are within 5% of ARC
and most LRU derived strategies perform very similar.

These results also show that the computational intensive-
ness does not influence the overall time in any significant
way. The I/O time and hitrate mostly dominate the overall
performance.

6. CONCLUSIONS
New low-latency storage technologies with asymmetric per-

formance characteristics call for buffer management strate-
gies that treat both temporal and spatial locality as first
class citizens. Hence replacement strategies need to opti-
mize for both hitrate and eviction cost to ensure balanced
performance.

128 256 512 1024 2048

-10,00

-8,00

-6,00

-4,00

-2,00

0,00

2,00

4,00

ARC CFDC 10% CFDC 40% CFLRU 10%

CFLRU 40% FBARC FOR+ LRU

Figure 20: Relative change compared to ARC

In this paper we have presented FBARC, a buffer manage-
ment strategy addressing I/O asymmetry on flash devices.
As part of our experimental evaluation we compare FBARC
against, LRU, CFLRU, CFDC, and FOR+. FBARC out-
performs other strategies by between 7% and 11% even by
achieving similar or slightly lower hitrates. This is a result
of FBARC’s asymmetry aware I/O behavior, which is also
reflected in the up to 7% lower I/O time. Moreover, FBARC
also exhibits acceptable I/O behavior on symmetric storage
– HDD.

On real world traces FBARC is also less computationally-
intensive (up to 2.5x) due to the employed Grid clustering
algorithm. In fact, on the traces used, FBARC exhibited the
lowest computational-intensiveness of all clustering strate-
gies. FBARC’s lightweight clustering algorithm is based on
the observation that on Flash devices random write oper-
ations concentrated on a small address region are executed
with close to sequential performance. This trend is also valid
with the newest generation of devices and will persist.

In addition, ARC and FBARC are the only scan-resistant
buffer management strategies among those under test. Such
property is especially relevant for Data Warehousing sys-
tems where large sequential scans may be followed by large
sequential update streams. Moreover sequential patterns are
even more common for new storage technologies since new
algorithms target write sequentialization.

7. ACKNOWLEDGMENTS
This work was supported by the DFG (Deutsche Forschungs-

gemeinschaft) project ’Flashy-DB’.

8. REFERENCES
[1] Database test suite dbt2.

[2] Database test suite dbt3.

[3] L. Bouganim, B. T. Jónsson, and P. Bonnet. uflip:
Understanding flash io patterns. CoRR,
abs/0909.1780, 2009.

[4] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A.
Ross, and C. A. Lang. SSD bufferpool extensions for
database systems. PVLDB, 3(2):1435–1446, 2010.

[5] F. Chen, D. A. Koufaty, and X. Zhang. Understanding
intrinsic characteristics and system implications of
flash memory based solid state drives. In
SIGMETRICS ’09, pages 181–192, 2009.

[6] S. Chen, P. B. Gibbons, and S. Nath. Rethinking
database algorithms for phase change memory. In
Proc. CIDR, pages 21–31, 2011.

[7] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W.
Lee, and H.-J. Song. A survey of flash translation
layer. J. Syst. Archit., 55:332–343, May 2009.

[8] P. J. Denning. Working sets past and present. IEEE
Trans. Softw. Eng., 6:64–84, Jan. 1980.

[9] J. Do, D. Zhang, J. M. Patel, D. J. DeWitt, J. F.
Naughton, and A. Halverson. Turbocharging dbms
buffer pool using ssds. In Proc. SIGMOD, pages
1113–1124, 2011.

[10] W. Effelsberg and T. Haerder. Principles of database
buffer management. ACM Trans. Database Syst.,
9(4):560–595, Dec. 1984.

[11] E. Geschwinde and H.-J. Schonig. Postgresql
Developer’s Handbook. Sams, 2001.

11

[12] B. S. Gill and D. S. Modha. Wow: wise ordering for
writes - combining spatial and temporal locality in
non-volatile caches. In Proceedings of the 4th
conference on USENIX Conference on File and
Storage Technologies - Volume 4, FAST’05, pages
10–10, 2005.

[13] R. Gottstein, I. Petrov, and A. Buchmann. Append
storage in multi-version databases on flash. In Proc. of
BNCOD, 2013.

[14] S. Jiang. Dulo: An effective buffer cache management
scheme to exploit both temporal and spatial localities.
In In USENIX Conference on File and Storage
Technologies (FAST, 2005.

[15] P. Jin, Y. Ou, T. Härder, and Z. Li. Ad-lru: An
efficient buffer replacement algorithm for flash-based
databases. Data Knowl. Eng., 72:83–102, Feb. 2012.

[16] H. Jo, J.-U. Kang, S.-Y. Park, J.-S. Kim, and J. Lee.
Fab: Flash-aware buffer management policy for
portable media players. In IEEE Transactions on
Consumer Electronics, 52, pages 485– 493. IEEE,
2006.

[17] H. Jung, H. Shim, S. Park, S. Kang, and J. Cha.
Lru-wsr: integration of lru and writes sequence
reordering for flash memory. volume 54, pages 215 –
1223, Aug. 2008.

[18] H. Jung, K. Yoon, H. Shim, S. Park, S. Kang, and
J. Cha. Lirs-wsr: integration of lirs and writes
sequence reordering for flash memory. In ICCSA’07,
pages 224–237. Springer-Verlag, 2007.

[19] W.-H. Kang, S.-W. Lee, and B. Moon. Flash-based
extended cache for higher throughput and faster
recovery. Proc. VLDB Endow., 5(11):1615–1626, 2012.

[20] H. Kim and S. Ahn. Bplru: a buffer management
scheme for improving random writes in flash storage.
In Proc. FAST’08, pages 16:1–16:14, 2008.

[21] Y. Lv, B. Cui, B. He, and X. Chen. Operation-aware
buffer management in flash-based systems. In
SIGMOD ’11, pages 13–24, 2011.

[22] N. Megiddo and D. S. Modha. ARC: a Self-Tuning,
low overhead replacement cache. In Proc FAST, pages
115–130, 2003.

[23] Y. Ou and T. Härder. Clean first or dirty first?: a
cost-aware self-adaptive buffer replacement policy. In
IDEAS ’10, pages 7–14, 2010.

[24] Y. Ou, T. Härder, and P. Jin. Cfdc: a flash-aware
buffer management algorithm for database systems. In
ADBIS’10, pages 435–449, 2010.

[25] S.-y. Park, D. Jung, J.-u. Kang, J.-s. Kim, and J. Lee.
Cflru: a replacement algorithm for flash memory. In
CASES ’06, pages 234–241, 2006.

APPENDIX
Fig. 21, 22, 23 and 24 show the accesses within each trace.
The darker a point, the more often a page at this point was
accessed. Please notice that each point represents several
thousand pages.

Figure 21: Trace C scatter diagram

Figure 22: Trace Cd scatter diagram

Figure 23: Trace B scatter diagram

Figure 24: Trace H scatter diagram (some portions
left out)

12

