
A Prolegomenon on OLTP Database Systems for
Non-Volatile Memory

Justin DeBrabant Joy Arulraj Andrew Pavlo

Brown University Carnegie Mellon University Carnegie Mellon University

debrabant@cs.brown.edu jarulraj@cs.cmu.edu pavlo@cs.cmu.edu

Michael Stonebraker Stan Zdonik Subramanya R. Dulloor

MIT CSAIL Brown University Intel Labs

stonebraker@csail.mit.edu sbz@cs.brown.edu subramanya.r.dulloor@intel.com

ABSTRACT
The design of a database management system’s (DBMS) architec-
ture is predicated on the target storage hierarchy. Traditional disk-
oriented systems use a two-level hierarchy, with fast volatile mem-
ory used for caching, and slower, durable device used for primary
storage. As such, these systems use a buffer pool and complex con-
currency control schemes to mask disk latencies. Compare this to
main memory DBMSs that assume all data can reside in DRAM,
and thus do not need these components.

But emerging non-volatile memory (NVM) technologies require
us to rethink this dichotomy. Such memory devices are slightly
slower than DRAM, but all writes are persistent, even after power
loss. We explore two possible use cases of NVM for on-line trans-
action processing (OLTP) DBMSs. The first is where NVM com-
pletely replaces DRAM and the other is where NVM and DRAM
coexist in the system. For each case, we compare the performance
of a disk-oriented DBMS with a memory-oriented DBMS using
two OLTP benchmarks. We also evaluate the performance of dif-
ferent recovery algorithms on these NVM devices. Our evalua-
tion shows that in both storage hierarchies, memory-oriented sys-
tems are able to outperform their disk-oriented counterparts. How-
ever, as skew decreases the performance of the two architectures
converge, showing that neither architecture is ideally suited for an
NVM-based storage hierarchy.

1. INTRODUCTION
Disk-oriented DBMSs are based on the same hardware assump-

tions that were made in 1970s with the original relational DBMSs.
The architectures of these systems use a two-level storage hierar-
chy: (1) a fast but volatile byte-addressable memory for caching
(i.e., DRAM) and (2) a slow, non-volatile block-addressable device
for permanent storage (i.e., HDD or SSD). These systems take a
pessimistic assumption that a transaction could access data that is
not in memory and thus will incur a long delay while a OS retrieves
the data needed from disk. They employ a heavyweight concur-
rency control scheme that allows multiple transactions to safely run
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at the same time; when one transaction stalls because of the disk,
another transaction can continue execution. This requires the use
of buffer pools and complex transaction serialization schemes.

Recent advances in manufacturing technologies have greatly in-
creased the capacity of DRAM available on a single computer. But
disk-oriented systems were not designed for the case where most,
if not all, of the data resides entirely in memory. The result is that
many of their legacy components have been shown to impede their
scalability for OLTP workloads [15]. In contrast, the architecture
of main-memory DBMSs assume that all data fits in main memory
and thus are able to remove the slower, disk-oriented components
from the system. As such, they have been shown to outperform
disk-oriented DBMSs [27]. TimesTen [2] was an early example
of this approach, and newer systems include H-Store [16], Heka-
ton [10], and HyPer [17].

In some OLTP applications, however, the database can grow to
be larger than the amount of memory available to the DBMS. Al-
though one could partition a database across multiple machines so
that the aggregate memory is sufficient, this can increase the num-
ber of multi-node transactions in some applications and thereby de-
grade their performance [23]. Recent work has explored adding
back slower disk-based storage in main memory DBMSs as a place
to store “cold” data, thereby freeing up in-memory storage [9, 26].
These techniques exploit the skewed access patterns of OLTP work-
loads to support databases that exceed the memory capacity of the
DBMS while still providing the performance advantages of a memory-
oriented system.

The advent of non-volatile memory (NVM)1 offers an intrigu-
ing blend of the two storage mediums. NVM is a broad class of
technologies, including phase-change memory [25] and memris-
tors [28], that provide low latency reads and writes on the same
order of magnitude as DRAM but with persistent writes like an
SSD. Researchers also speculate that NVM will have much higher
storage densities than what is possible with current DRAM devices.
A comparison of performance characteristics of non-volatile mem-
ory technologies relative to DRAM and Flash is shown in Table 1.
Such low-latency, high-capacity NVM storage has the potential to
significantly change the design of DBMS architectures [6]. It is
unclear, however, which DBMS architecture is ideal for NVM or
whether a new architecture design is necessary.

Given this outlook, this paper presents our initial foray into the
use of NVM in OLTP DBMSs. We test several DBMS architec-
tures on an experimental, hardware-based NVM emulator and ex-
plore their trade-offs using two OLTP benchmarks. The read and

1NVM is also referred to as storage-class memory or persistent memory.
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DRAM NAND Flash Memristor PCM

Byte-Addressable Yes No Yes Yes
Capacity 1⇥ 4⇥ 2-4⇥ 2-4⇥
Latency 1⇥ 400⇥ 3-5⇥ 3-5⇥

Endurance 1016 104 106 106-108

Table 1: Comparison of performance characteristics of non-volatile mem-
ory technologies relative to DRAM and NAND Flash.

write latencies of the emulator are configurable, and thus we are
able to evaluate multiple potential NVM profiles that are not spe-
cific to a particular technology. To the best of our knowledge, our
investigation is the first to use emulated NVM for OLTP DBMSs.

Since it is unknown what future memory hierarchies will look
like with NVM, we consider two potential use cases. The first is
where the DBMS only has NVM storage with no DRAM. The sec-
ond case is where NVM is added as another level of the storage
hierarchy between DRAM and SSD. In both these configurations,
the system still uses volatile CPU caches.

For both configurations, our results show that memory-oriented
system outperforms traditional disk-oriented system on NVM. This
difference is most pronounced when the skew in the workload is
high, as this introduces significant lock contention in a disk-oriented
system. However, the performance of memory-oriented system
decreases as skew decreases while the performance of the disk-
oriented system increases as skew decreases. This convergence is
interesting, as it signifies that neither architecture is ideally suited
for NVM. In Section 7, we discuss possible system architectures
for NVM that leverage both memory-oriented and disk-oriented
design features, thereby allowing uniform performance across all
workload skews. In addition, we propose new possibilities for re-
covery schemes that take advantage of the persistence of NVM to
provide nearly-instant recovery.

2. NVM HARDWARE EMULATOR
Evaluation of software systems using NVM is challenging due

to lack of actual hardware. In this study, we use a NVM hardware
emulator developed by Intel Lab. The emulator is implemented on
a dual-socket Intel Xeon processor-based platform. Each processor
has eight cores that run at 2.6 GHz and supports four DDR3 chan-
nels with two DIMMs per channel. The emulator’s custom BIOS
partitions the available DRAM memory into emulated NVM and
regular (volatile) memory. Half of the memory channels on each
processor are reserved for emulated NVM while the rest are used
for regular memory. The emulated NVM is visible to the OS as
a single NUMA node that interleaves memory (i.e., cache lines)
across the two sockets. We are also able to configure the latency
and bandwidth for the NVM partition by writing to CPU registers
through the OS kernel. We use special CPU microcode and an emu-
lation model for latency emulation where the amount of bandwidth
throttling in the memory controller is programmable. We refer in-
terested readers to [12] for more technical details on the emulator.

We divide the NVM partition into two sub-partitions. The first
sub-partition is available to software as a NUMA node. The sec-
ond sub-partition is managed by PMFS, a file system optimized for
persistent memory [12]. Applications allocate and access mem-
ory in the first sub-partition using libnuma library or tools such
as numactl. We refer to this interface provided by the emulator
as the NUMA interface. Applications can also use regular POSIX
file system interface to allocate and access memory in the second
sub-partition through the PMFS interface. Since the memory band-
width of our test systems executing the OLTP benchmarks is a
small fraction of the available bandwidth, we do not modify the
bandwidth throttling setting in our evaluation. Further, based on

this observation, we postulate that OLTP systems are unlikely to
be constrained by memory (particularly write) bandwidth. We now
discuss the two emulator interfaces and how we utilize them.

2.1 NUMA Interface
We use the emulator’s NUMA interface for evaluating the NVM-

only DBMS architecture. The main benefit of this system configu-
ration is that it allows us to evaluate DBMSs without making major
modifications to the source code. All memory allocations for an ap-
plication are assigned to the special NUMA node using numactl.
Any read or write to memory are slowed down according to the
emulator’s latency setting. One potential drawback of this interface
is that the DBMS’s program code and OS data structures related to
the DBMS’s processes also reside in NVM. Furthermore, memory
for other unrelated processes in the system could be allocated to the
NUMA node. We did not observe this issue in our trials because of
the default Linux memory policy that favors allocations from reg-
ular (volatile) memory nodes. In addition, the DBMS’s program
code is likely to be cached in the on-chip CPU caches, minimizing
the overhead of fetching from the NVM.

2.2 PMFS Interface
The emulator also supports a file system interface that allows

us to deploy DBMSs using NVM with DRAM. Traditional file sys-
tems that operate at block granularity and in a layer above the block
device abstraction are not best suited for fast, byte-addressable NVM.
This is because the overhead of translating between two different
address spaces (i.e., virtual addresses in memory and blocks in the
block device) and maintaining a page cache in a traditional file sys-
tem is significant. PMFS is a lightweight file system developed at
Intel Labs that addresses this issue by completely avoiding page
cache and block layer abstractions [12]. PMFS includes several
optimizations for byte-addressable NVM that provide a significant
performance improvement over traditional file systems (e.g., ext4).
PMFS also allows applications to access NVM using memory-mapped
I/O. We use the PMFS interface in the evaluation of both the NVM-
only and NVM+DRAM architectures.

3. NVM-ONLY ARCHITECTURE
In the NVM-only architecture, the DBMS uses NVM exclusively

for its storage. We compare a memory-oriented DBMS with a disk-
oriented DBMS when both are running entirely on NVM storage
using the emulator’s NUMA interface. For the former, we use the
H-Store DBMS [1], while for the latter we use MySQL (v5.5) with
the InnoDB storage engine. Both systems are tuned according to
their “best practice” guidelines for OLTP workloads.

The NVM-only architecture has implications for the DBMS’s
recovery scheme. In all DBMSs, some form of logging is used to
guarantee recoverability in the event of a failure [14]. Disk-oriented
DBMSs provide durability through the use of a write-ahead log,
which is a type of physical logging wherein updated versions of
data are logged to disk with each write operation. Such an approach
has a significant performance overhead for main memory-oriented
DBMSs [15, 19]. Thus, others have argued for the use of logical
logging for main memory DBMSs where the log contains a record
of the high-level operations that each transaction executed.

The overhead of writing out logical log records and the size
of the log itself is much smaller for logical logging. The down-
side, however, is that the recovery process takes longer because
the DBMS must re-execute each transaction to restore the database
state. In contrast, during recovery in a physical logging system, the
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Figure 1: NVM-Only Architecture

log is replayed forward to redo the effects of committed transac-
tions and then replayed backwards to undo the effects of uncom-
mitted transactions [20, 14]. But since all writes to memory are
persistent under the NVM-only configuration, heavyweight logging
protocols such as these are excessive and inefficient.

We now discuss the runtime operations of the memory-oriented
and disk-oriented DBMSs that we evaluated on the NVM-only con-
figuration in more detail (see Fig. 1). For each architecture, we
analyze the potential complications and performance pitfalls from
using NVM in the storage hierarchy.

3.1 Memory-oriented System
We use the emulator’s NUMA interface to ensure that all of H-

Store’s in-memory data is stored on NVM. This data includes all
tuples, indexes, and other database elements. We did not change
any part of H-Store’s storage manager or execution engine to use
the byte-addressable NVM storage. But this means that the DBMS
is not aware that writes to the memory are potentially durable.

Since H-Store was designed for DRAM, it employs a disk-oriented
logical logging scheme [19]. To reduce recovery time, the DBMS
also periodically takes a non-blocking checkpoint of all the parti-
tions and writes them out to a disk-resident checkpoint. For our
experiments in Section 5, we configured H-Store to write its check-
points and log files to PMFS.

It is possible to use H-Store’s logging scheme in the NVM-only
architecture, but there is a trade-off between the DBMS’s perfor-
mance at runtime and the time it takes to recover the database after
a crash. The issue is that there may be some transactions whose
changes are durable in the NVM but will still be re-executed at
recovery. This is because H-Store’s storage manager writes all
changes in place, and it does not have any way to determine that
a change to the database has been completely flushed from its last-
level cache to the NVM. Alternatively, the DBMS could periodi-
cally flush the volatile cache for a batch of transactions (i.e., group
commit) to ensure that their changes are durable [24]. This feature,
however, is currently not available in the emulator.

3.2 Disk-oriented System
In a disk-oriented DBMS, the system’s internal data is divided

into in-memory and disk-resident components. The DBMS main-
tains a buffer pool in memory to store copies of pages retrieved
from the database’s primary storage location on disk. We use the
emulator’s NUMA interface to store the DBMS’s buffer pool in
the byte-addressable NVM storage, while its data files and logs are
stored in NVM through the PMFS interface.
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Figure 2: NVM+DRAM Architecture

Like with H-Store, MySQL is not aware that modifications to
the buffer pool are persistent when using the NUMA interface.
MySQL uses a doublewrite mechanism for flushing data to persis-
tent storage. This involves first writing out the pages to a contigu-
ous buffer on disk before writing them out to the data file. The dou-
blewrite mechanism serves two purposes. First, it protects against
torn writes that can occur when the DBMS has to atomically com-
mit data that is larger the page size of the underlying storage de-
vice. Second, it also improves performance of (synchronous) log-
ging as writes to the log buffer are sequential. This mechanism is
not useful, however, in the NVM-only architecture where both the
doublewrite buffer and the data file are on NVM. Since the dou-
blewrite mechanism maintains multiple copies of each tuple, the
DBMS unnecessarily wastes storage space in the NVM. The per-
formance difference between random and sequential I/O on NVM
is also much smaller than disk, thus batching the writes together in
the doublewrite buffer does not provide the same gains as it does on
a disk. Furthermore, the overhead of fsync in PMFS is also lower
than in disk-oriented file systems.

4. NVM+DRAM ARCHITECTURE
In this configuration, the DBMS relies on both DRAM and NVM

for satisfying its storage requirements. If we assume that the entire
dataset cannot fit in DRAM, the question arises of how to split data
between the two storage layers. Because of the relative latency
advantage of DRAM over NVM, one strategy is to attempt to keep
the hot data in DRAM and the cold data in NVM. One way is to
use a buffer pool to cache hot data, as in traditional disk-oriented
DBMSs. With this architecture, there are two copies of cached
data, one persistent copy on disk and another copy cached in the
DRAM-based buffer pool. The DBMS copies pages into the buffer
pool as they are needed, and then writes out dirty pages to the NVM
for durability. Another approach is to use the anti-caching system
design proposed in [9] where all data initial resides in memory and
then cold data is evicted out to disk over time. One key difference
in this design is that exactly one copy of the data exists at any point
in time. Thus, a tuple is either in memory or in the anti-cache. An
overview of these two architectures is shown in Fig. 2.

4.1 Anti-Caching System
Anti-caching is a memory-oriented DBMS design that allows

the system to manage databases that are larger than the amount
of memory available without incurring the performance penalty of
a disk-oriented system [9]. When the amount of in-memory data
exceeds a user-defined threshold, the DBMS moves data to disk to



free up space for new data. To do this, the system dynamically con-
structs blocks of the coldest tuples and writes them asynchronously
to the anti-cache on disk. The DBMS maintains in-memory “tomb-
stones” for each evicted tuple. When a running transaction attempts
to access an evicted tuple through its tombstone, the DBMS aborts
that transaction and fetches that it needs from the anti-cache with-
out blocking other transactions. Once the data that the transaction
needs is moved back into memory, the transaction is restarted.

For this study, we propose an extension of anti-caching where
the cold data is stored in an NVM-optimized hash table rather than
disk. We modify the cold data storage manager to adapt the anti-
caching system to NVM. In the original implementation, we use
BerkeleyDB [22] key-value store to manage anti-caching blocks.
For NVM-backed data files, BerkeleyDB proved to be too heavy-
weight as we need finer-grained control over writes to NVM. To
this end, we implemented a lightweight array-based block store us-
ing the emulator’s PMFS interface. Elements of the array are anti-
cache blocks and array indexes correspond to the anti-cache block
id. If a block is transferred from the anti-cache to DRAM, the array
index where the block was stored is added to a free list. When a new
anti-cache block needs to be written, a vacant anti-cache block is
acquired from the free list. We use a slab-based allocation method,
where each time the anti-cache is full, a new slab is allocated and
added to the free list. If the anti-cache shrinks, then the DBMS
compacts and deallocates sparse slabs.

4.2 Disk-oriented System
We configure a disk-oriented DBMS to run on the NVM+DRAM

architecture. We allow the buffer pool to remain in DRAM and
store the data and log files using the PMFS interface. The main dif-
ference between this configuration and the the NVM-only MySQL
configuration presented in Section 3.2 is that all main memory ac-
cesses in this configuration go to DRAM instead of NVM.

5. EXPERIMENTAL EVALUATION
To evaluate these different memory configuration and DBMS de-

signs, we performed a series of experiments on the NVM emulator.
We deployed four different system configurations: two executing
entirely on NVM and two executing on a hybrid NVM+DRAM hi-
erarchy. For the NVM-only analysis, we configured MySQL to ex-
ecute entirely out of NVM and have compared it with H-Store con-
figured to execute entirely in NVM. For the NVM+DRAM hierar-
chy analysis, we configured MySQL to use a DRAM-based buffer
pool and store all persistent data in PMFS. As a comparison, we
implemented the NVM adaptations to the anti-caching system de-
scribed above by modifying the original H-Store based anti-caching
implementation. We used two benchmarks in our evaluation and a
range of different configuration parameters.

5.1 System Configuration
All experiments were conducted on the NVM emulator described

in Section 2. For each system, we evaluate the benchmarks on two
different NVM latencies: 2⇥ DRAM and 8⇥ DRAM, where the
base DRAM latency is approximately 90 ns. We consider these la-
tencies to represent the best case and worst case NVM latencies re-
spectively [12]. We chose this range of latencies to make our results
as independent from the underlying NVM technology as possible.

5.2 Benchmarks
We now describe the two benchmarks that we use for our eval-

uation. We use H-Store’s internal benchmarking framework for
both the H-Store on NVM and the anti-caching analysis. For the

MySQL benchmarking, we use the OLTP-Bench [11] framework.

YCSB: The Yahoo! Cloud Services Benchmark (YCSB) is a
workload that is representative of large-scale services provided by
web-scale companies. It is a key-value store workload. We config-
ure each tuple to consist of a unique key and 10 columns of random
string data, each 100 bytes in size. Thus, the total size of a tuple is
approximately 1KB. The workload used for this analysis consists
of two transaction types, a read and an update transaction. The
read randomly selects a key and reads a single tuple. The update
randomly selects a key and updates all 10 non-key values for the tu-
ple selected. The mix of read and update transactions in a workload
is an important parameter in our analysis, as writes are much more
costly, especially if data in the buffer pool must be kept consistent.
We use three different workload mixtures:
• Read-Heavy: 90% reads, 10% updates
• Write-Heavy: 50% reads, 50% updates
• Read-Only: 100% reads
In addition to the read-write mix, we also control the amount of

skew that determines how often a tuple is accessed by transactions.
We use YCSB’s Zipfian distribution to model temporal skew in the
workloads, meaning that newer items are accessed much more fre-
quently than older items. The amount of skew is controlled by the
Zipfian constant s > 0, where higher values of s generate higher
skewed workloads. We pick values of s in the range of 0.5 to 1.5,
which is representative of a range of skewed workloads.

TPC-C: This benchmark is an industry standard for evaluating the
performance of OLTP systems [29]. The benchmark simulates an
order-processing application, and consists of nine tables and five
different transaction types. Only two of the transaction types mod-
ify tuples, but they make up 88% of a TPC-C workload. We use
100 warehouses and 100,000 items, resulting in a total data size of
10GB. For simplicity, we have configured transactions to only ac-
cess data from a single warehouse. Thus, all transactions are single-
sited (i.e., there are no distributed transactions) because warehouses
are mapped to partitions. For the anti-cache trials, we evict data
from the HISTORY, ORDERS, and ORDER_LINE tables, as these are
the only tables where transactions insert new data.

5.3 Results
We will now discuss the results of executing the two bench-

marks, YCSB and TPC-C, on each of the NVM-only and NVM-
DRAM architectures described in Sections 3 and 4.

5.3.1 NVM-Only Architecture
YCSB: We evaluate YCSB on each system across the range of

skew parameters and workload mixtures described above. We first
consider the impact of NVM latency on the throughput of memory-
oriented and disk-oriented systems. The results for the read-heavy
workload shown in Fig. 3b indicate that increasing NVM latency
decreases throughput of H-Store and MySQL by 12.3% and 14.8%
respectively. There is no significant impact on H-Store’s perfor-
mance in the read-only workload shown in Fig. 3a, which indicates
that latency mainly impacts the performance of logging.

The throughput of these systems vary with the amount of skew
in the workload. The impact of skew on H-Store’s performance is
more pronounced in the read-heavy workload shown in Fig. 3b.
Throughput drops by 18.2% in the read-heavy workload as the
skew level is reduced. The drop in throughput is due to the applica-
tion’s larger working set size, which increases the number of cache
misses and subsequent accesses to NVM. In contrast, MySQL per-
forms poorly on high-skew workloads but its throughput improves
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Figure 4: NVM+DRAM Architecture – YCSB.

by 5⇥ as skew decreases. This is because a disk-oriented system
uses locks to allow transactions to execute concurrently. Thus, if a
large portion of the transactions access the same tuples, then lock
contention becomes a bottleneck.

We can summarize the above observations as follows: (1) in-
creasing NVM latency mainly impacts the performance of the log-
ging mechanism, and (2) the throughput of memory-oriented and
disk-oriented systems vary differently as skew decreases. We con-
tend that the ideal system for a NVM-only architecture will possess
features of both memory-oriented and disk-oriented systems.

TPC-C: For the TPC-C benchmark, most transactions insert or
access new records (i.e., NewOrder), and older records are almost
never accessed. As such, there is strong temporal skew built into
the semantics of the benchmark. Only a subset of the tables are
actually increasing in size, and the rest are static. In Fig. 5a, we
see that throughput of both systems only varies slightly with an
increase in NVM latency, and that for both latencies the throughput
of H-Store is 10⇥ higher than that of the disk-oriented system.

5.3.2 NVM+DRAM Architecture
YCSB: We use the same YCSB skew and workload mixes, but

configure the amount of DRAM available to the DBMSs to be 1
8 of

the total database size. There are several conclusions to draw from
the results shown in Fig. 4. The first is that the throughput of the
two systems trend differently as skew changes. For the read-heavy
workload in Fig. 4b, anti-caching achieves 13⇥ higher throughput
over MySQL when skew is high, but only a 1.3⇥ improvement
when skew is low. Other workload mixes have similar trends. This
is because the anti-caching system performs best when there is high
skew since it needs to fetch fewer blocks and restart fewer transac-
tions. In contrast, the disk-oriented system performs worse on the
high skew workloads due to high lock contention. We note that at
the lowest skew level, MySQL’s throughput decreases due to lower
hit rates for data in the CPU’s caches.

Another notable finding is that both systems do not exhibit a
major change in performance with longer NVM latencies. This
is significant, as it implies that neither architecture is bottlenecked
by the I/O on the NVM. Instead, the decrease in performance is
due to the overhead of fetching and evicting data from NVM. For
the disk-oriented system, this overhead comes from managing the
buffer pool, while in the anti-caching system it is from restarting

transactions and asynchronously fetching previously evicted data.
We can summarize the above observations as follows: (1) the

throughput of the anti-caching system decreases as skew decreases,
(2) the throughput of the disk-oriented system increases as skew
decreases, and (3) neither architecture is bottlenecked by I/O when
the latency of NVM is between 2-8⇥ the latency of DRAM. Given
these results, we believe that the ideal system architecture for a
NVM+DRAM memory hierarchy would need to posses features of
both anti-caching and disk-oriented systems to enable it to achieve
high throughput regardless of skew.

TPC-C: We next ran the TPC-C benchmark on the anti-caching
and disk-oriented DBMSs using different NVM latencies. The re-
sults in Fig. 5b show that the throughput of both DBMSs do not
change significantly as NVM latency increases. This is expected,
since all of the transactions’ write operations are initially stored on
DRAM. These results corroborate previous studies that have shown
the 10⇥ performance advantage of an anti-caching system over the
disk-oriented DBMS [9]. For the anti-caching system, this work-
load essentially measures how efficiently it is able to evict data to
PMFS (since no transaction reads old data).

5.3.3 Recovery
Lastly, we evaluate recovery schemes in H-Store using the em-

ulator’s NUMA interface. We implemented logical logging (i.e.,
command logging) and physical logging (i.e., ARIES) recovery
schemes within H-Store. For each scheme, we first measure the
DBMS’s runtime performance when executing a fixed number of
TPC-C transactions (50,000). We then simulate a system failure
and then measure how long it takes the DBMS to recover the database
state from each scheme’s corresponding log stored on PMFS.

For the runtime measurements, the results in Fig. 6a show that
H-Store achieves 2⇥ higher throughput when using logical log-
ging compared to physical logging. This is because logical logging
only records the executed commands and thus is more lightweight.
The amount of logging data for the workload using scheme is only
5MB. In contrast, physical logging keeps track of all modifications
made at tuple-level granularity and its corresponding log 220MB.
This reduced footprint makes logical logging more attractive for
the first NVM devices that are expected to have limited capacities.

Next, in the results for the recovery times, Fig. 6b shows that log-
ical logging 3⇥ is slower than physical logging. One could reduce
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Figure 5: NVM Latency Evaluation – Performance comparison for the
TPC-C benchmark using different NVM latencies.

this time in logical logging by having the DBMS checkpoint more
frequently, but this will impact steady-state performance [19].

We note that both schemes are essentially doing unnecessary
work, since all writes to memory when using the NUMA inter-
face are potentially durable. A better approach is to use a recovery
scheme that is designed for NVM. This would allow a DBMS to
combine the faster runtime performance of logical logging with the
faster recovery of physical logging.

6. RELATED WORK
Pelley et al. [24] examine a novel recovery mechanism for OLTP

systems running on NVM. The mechanism is based on a group
commit protocol that persists the effects of transactions in batches
to reduce the number of write barriers required for ensuring correct
ordering. It relies on a volatile staging buffer to hold the effects of
the ongoing batch. This is better suited for NVM than traditional
ARIES-style recovery mechanisms that are designed to handle I/O
delays of high-latency storage devices. Fang et. al. [13] designed a
log manager that directly writes log records to NVM and addresses
the problems of detecting partial writes and recoverability. This
prior work relies on software-based emulation that can only emu-
late a NVM+DRAM system. In contrast, we use a hardware-based
emulator that supports an NVM-only configuration.

Many systems have been proposed to simplify the usage of NVM
in applications by providing an interface for programming with per-
sistent memory. Mnemosyne [30] and NV-heaps [7] use software
transactional memory to support transactional semantics along with
word-level and object-level persistence. NVMalloc [21] is a mem-
ory allocator that considers wear leveling of NVM. Although the
primitives provided by these systems allow programmers to use
NVM with their applications, they are orthogonal to providing trans-
actional semantics required by a DBMS.

Copeland et al. [8] predict that both latency and throughput can
be improved by leveraging battery-backed DRAM for supporting
transaction processing applications. Baker et al. [5] evaluate the
utility of battery-backed DRAM in distributed file systems as a
client-side file cache to reduce write traffic to file servers. Al-
though these studies provide insights on the implications of NVM
properties on storage systems, they rely on modeling and trace-
driven simulation rather than direct evaluation on hardware. Bailey
et al. [4] explore the impact of NVM devices on different OS com-
ponents like virtual memory and file systems. Badam [3] gives
an overview of the potential impact of NVM on different storage
technologies and software systems. Kim et al. [18] propose an in-
memory filesystem for non-volatile memory akin to PMFS.

7. FUTURE WORK
We now discuss two avenues of future work that we are ac-

tively pursuing. The first is a new OLTP DBMS that is designed
to achieve nearly instant recovery for the NVM-only architecture.

(a) Throughput (b) Recovery Time
Figure 6: Recovery Evaluation – Comparison of recovery schemes in H-
Store using the TPC-C benchmark.

The second is an optimized variant of the anti-caching system for
the NVM+DRAM architecture.

7.1 N-Store
The results in Fig. 3 show that the performance of the memory-

oriented architecture converges with that of the disk-oriented sys-
tem in workloads that involve writes, especially as skew decreases.
We attribute this to the overhead of logging and diminishing ben-
efits from H-Store’s concurrency control scheme that is optimized
for main memory [27]. In addition, in the recovery experiments
shown in Fig. 6b, we observe that recovery latency is high for log-
ical logging. We can reduce this overhead by checkpointing more
frequently, but this also degrades performance [19]. Based on these
constraints, we recognize the need to design a new DBMS that is
specifically designed for NVM. The recoverability and concurrency
control mechanisms of this system will leverage the persistence
properties of NVM. We envision that this new DBMS, dubbed N-
Store, will be a hybrid architecture that borrows ideas from both
memory-oriented and disk-oriented systems.

7.2 Anti-Caching with Synchronous Fetches
As our results in Fig. 4 show, the anti-caching system outper-

forms the disk-oriented architecture across all skew levels, but that
its performance advantage decreases as skew decreases. This is
due to the overhead of aborting and restarting transactions when
the DBMS must fetch evicted data. The performing this retrieval
synchronously is prohibitively high in disk-based storage. Thus,
the cost of restarting the transaction once the block is fetched is
justified. However, if we replace disk with NVM, then the cost of
fetching a block is significantly less. This means that it may be
better to just stall the transaction and retrieve the data that it needs
immediately rather than aborting the transaction and restarting it
after the data that it needs is moved into memory. We plan to ex-
plore this variation of the anti-caching mechanism using the same
principles to control data allocation and movement in NVM.
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9. CONCLUSION
In this paper, we explored two possible architectures using non-

volatile memory (i.e., NVM-only and NVM+DRAM architectures).
For each architecture, we evaluated memory-oriented and disk-oriented
OLTP DBMSs. Our analysis shows that memory-oriented sys-
tems are better-suited to take advantage of NVM and outperform
their disk-oriented counterparts. However, in both the NVM-only
and NVM+DRAM architectures, the throughput of the memory-
oriented systems decreases as workload skew is decreased while the
throughput of the disk-oriented architectures increases as workload
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skew is decreased. Because of this, we conclude that neither sys-
tem is ideally suited for NVM. Instead, a new system is needed with
principles of both disk-oriented and memory-oriented systems and
a lightweight recovery scheme designed to utilize the non-volatile
property of NVM.
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