
QTM: Modelling Query Execution with Tasks

Steffen Zeuch Johann-Christoph Freytag

Department of Computer Science, Humboldt-Universität zu Berlin

{zeuchste,freytag}@informatik.hu-berlin.de

ABSTRACT
Over the last decade, several approaches for parallel query
execution have emerged. The performance of these approaches
is mainly affected by the non-manageable cache hierarchy.
However, each approach exploits the capabilities of modern
processors differently. Furthermore, the comparison is diffi-
cult due to different operator-to-resource assignments dur-
ing run-time (scheduling strategy) and the number of tuples
each operator processes (chunk size).

In this paper, we first classify common DBMS by their
scheduling strategies and chunk sizes. Then, we propose a
task model called Query Task Model (QTM) that opens a
design space for database schedules. With QTM, we gen-
eralize the modeling of parallel query execution such that
different approaches become comparable. Using QTM, we
model an arbitrary QEP as a set of tasks. Each task repre-
sents a particular piece of work on a subset of data.

Our evaluation of different schedules modeled in QTM
shows, that a tuple-at-a-time schedule cannot exploit mod-
ern hardware efficiently. In contrast, an operator-at-time
schedule increases the performance due to increased cache
utilization. However, a buffer-at-a-time schedule that takes
the cache hierarchy into account outperforms schedules that
do not. Furthermore, we show that a schedule that is op-
timized for data cache locality does not necessarily outper-
form a schedule optimized for instruction cache locality. We
identify a sweet spot where the ratio of data locality and
instruction locality produces the fastest schedules.

1. INTRODUCTION
Over the last decades, the clock speed per core reached a

plateau due to several physical limitations. Since then, an
increasing number of available on-chip transistors are used
to incorporate more processors and larger cache. Addition-
ally, a large amount of commonly available main memory
allows modern database management systems (DBMS) to
store their entire working sets in main memory. Nowadays,
CPUs process data much faster than transferring data from
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Figure 1: Classification of Databases.

main memory into caches. This trend creates a Memory
Wall which is the main challenge for modern main memory
database systems [1, 4].

Research in the last decade also shows, that parallelization
and chip multiprocessing exacerbate these Memory Wall [1,
4]. The ever increasing number of processing units per chip
have to share a constant memory bandwidth; thus, reduc-
ing the available memory bandwidth per processing unit.
An uncoordinated parallel access to shared data structures
from different processing units leads to a memory bottleneck
[4]. To overcome the memory bottleneck, the locality of
data and instructions become increasingly important. The
cache hierarchy of modern processors alleviates the memory
bottleneck by reusing already loaded data and instructions
in caches. However, caches cannot be controlled directly.
Thus, a database might only guide cache behavior by indi-
rect means like data placement and access patterns. The
exploitation of these indirect means are vital for chip multi-
processors to supply each CPU with sufficient data despite
limited main memory bandwidth.

Due to their inherent parallelism, the opportunities of chip
multiprocessors are in particular applicable in DBMS. On
the other hand, a DBMS may also exhibit tight data de-
pendencies that require some degree of synchronization be-
tween operators executed in parallel. To exploit parallelism
in databases, different approaches for parallel query execu-
tion have emerged over the last decade. In Figure 1, we
classify common databases by their scheduling strategy and
chunk size. The scheduling strategy controls the processing
of different operators by different processors. The chunk size
determines the number of tuples processed by each opera-
tor instance and ranges from one tuple, over multiple tuples
(N), to an entire column.



In the light of this discussion, our contributions are as
follows:

• We classify common DBMS by their scheduling strate-
gies and chunk sizes.

• We define QTM (Query Task Model), a model that
allows to express and compare different approaches for
parallel query execution.

• Using QTM, we compare common query execution sched-
ules regarding their cache utilization.

• Based on our analysis, we identify a sweet spot that
produces the fastest schedules.

The remainder of this paper is organized as follows. In Sec-
tion 2, we classify common databases by their scheduling
strategies and chunk sizes. In Section 3, we introduce our
Query Task Model (QTM). In Section 4, we model common
database schedules with QTM. In Section 5, we present our
evaluation results and show related work in Section 6. We
conclude and outline future work in Section 7.

2. CLASSIFICATION OF DATABASE
SCHEDULERS

Over the last decades, different approaches for parallel
query execution have emerged because scheduling a database
query exhibits some degrees of freedom. In the following, we
present four alternatives a database scheduler might exploit
when optimizing query execution with respect to available
resources.

First, a scheduler has to determine a execution order for
available operators among queries. For a single query, the
execution order has to satisfy the constraints introduced by
a QEP. For multiple queries, the execution order for pending
queries has to take fairness and priorities into account. Sec-
ond, a scheduler has to assign a degree of parallelism (dop)
to each operator. A dop can be either determined stati-
cally during compile-time or dynamically during run-time.
Third, a scheduler has to specify a degree of thread coop-
eration. In general, threads can either work cooperatively
on the same operator or separately on different operators.
Finally, a scheduler has to partition the input for each op-
erator. The size of a partition, so-called chunk size, deter-
mines how many tuples are processed by an operator before
returning the result.

In this paper, we focus on operator scheduling for a single
query during run-time. Furthermore, we assume an invari-
able QEP that was generated by a query optimizer as an
input. In the following, we classify different database sched-
uler by their scheduling strategies and chunk sizes as shown
in Figure 1. At first, we show how early databases imple-
ment scheduling before introducing three classes of state-of-
the-art database schedulers in Section 2.1. After that, we
describe chunk sizes that are proposed in research and their
impact on query execution in Section 2.2. Finally, we show
possibilities for exploiting parallelism in databases as well
as different degrees of thread cooperation in Section 2.3.

2.1 Scheduling Strategies
The first dimension for our DBMS classification is based

on the applied scheduling strategy (see Figure 1). Early
DBMS implemented a static optimization approach that de-
termined the dop of an operator statically based resource
availability at compile-time [21, 27]. During run-time, the

dop was implemented by a static assignment of threads to
operators. The main disadvantage of this approach is the
temporal gap between compile-time and run-time. During
run-time, the system load might be quite different which
may lead to a suboptimal resource utilization. Furthermore,
uncertain information at compile-time such as wrong car-
dinality estimates, skewed data, correlated attributes, out-
dated statistics, or user-defined functions, may also lead to
a suboptimal decision [14]. The result of these uncertainties
could be a wrong prediction of operator work (execution
skew) that leads to an imbalanced work distribution. Ad-
ditionally, a static assignment of threads to operators intro-
duces a discretization error. Since operators and processors
are discrete entities, a fixed number of operators cannot be
assigned to processors such that each operator reaches its
optimal dop [6]. Finally, a static assignment may lead to
a pipeline delay problem. Therefore, processors that are as-
signed to operators at the end of an execution plan idle at
the beginning and processors at the beginning idle at the
end [17]. To response to these compile-time uncertainties,
three different classes of database schedulers have emerged.

A first class of state-of-the-art database schedulers re-
sponds to compile-time uncertainties at run-time. For exam-
ple, XPRS implements a two-phase optimization approach
[21, 13]. In the first phase, the optimizer ignores aspects
of parallelism and produces the best sequential plan during
compile-time. In the second phase, the plan is optimized
for parallelism during run-time. Thus, a plan is decom-
posed into a set of plan fragments and the dop is deter-
mined based on the current resource availability. After that,
a parallel executor determines a processing schedule and dis-
tributes the fragments for execution. These approach leads
to an improved resource utilization because it takes resource
availability at run-time into account to determine the dop.
Following this approach, dynamic optimization during run-
time becomes a vital source for query execution performance
and databases implement a dedicated run-time scheduler. A
run-time scheduler is able to react to changes in the system
load or incorrect estimations during run-time. Over the last
decades, even more complex scheduler have been proposed
[5, 23, 15, 12]. For instance, one run-time scheduler takes
NUMA-characteristics into account [15] and another imple-
ments a time-slice based scheduling algorithm [12].

A second class of state-of-the-art database schedulers re-
sponds to compile-time uncertainties with dynamic load bal-
ancing. At compile-time, a query plan is disassembled into
tasks that are placed into a queue. During run-time, each
processor dequeues tasks until the queue is entirely pro-
cessed. A dynamic load balancing approach omits a ded-
icated run-time scheduler because the actual mapping of
threads to operators is implemented using a work-pull strat-
egy. Thus, each processor dynamically acquires new work
on its own if computing capacities are available. The ex-
ecution order of operators is determined by the order of
tasks in the queue. The dop of an operator is not statically
defined and depends on the number tasks currently execut-
ing this operator. Furthermore, predicting which processor
executes which task reveals high uncertainties because dif-
ferently sized tasks and varying resource availabilities intro-
duce high variability. The proposed approaches in research
vary in the number of queues and the granularity of tasks
[6, 17, 16, 22].



A third class of state-of-the-art database schedulers re-
sponds to compile-time uncertainties with a simple execu-
tion model. The demand-driven volcano execution model
emerged as the most commonly used scheduling strategy
[10, 25, 19]. This model hides aspects of parallelism from
operators and omits a dedicated run-time scheduler. In-
stead, the volcano execution model implements a open-next-
close iterator interface for each operator. The open call
initialize the operator and the close call deallocates all re-
sources. The next call on one operator propagates recur-
sively to its child operators until one output tuple is gener-
ated. Through repeated next calls, all tuples are processed
and the operator can be closed. The actual assignment
of resources to operators is implicitly implemented by the
model. Thus, this model makes parallel query execution en-
tirely self-scheduling [10]. The advantages are the avoidance
of synchronization and scheduling, minimized data copies,
reuse of current data items in main memory, and lazy op-
erator evaluation [25]. Graefe extends this model for par-
allelism by introducing exchange operators to synchronize
different threads executing the same query plan [10].

2.2 Chunk Size
The second dimension for our DBMS classification is based

on the chunk size (see Figure 1). The input of an opera-
tor can be divided into multiple chunks (partitions) which
can be processed in parallel by different operator instances
(intra-operator parallelism). The chunk size determines how
many tuples are processed by an operator instance before
the result is returned. Thus, the chunk size determines the
number of operator calls.

The chunk size is defined either at compile-time, run-time,
or as a constant value. However, all DBMS shown in Fig-
ure 1 define a fix chunk size for all QEPs. An alternative ap-
proach proposed by Cieslewicz et al. [8] suggests to change
the chunk size dynamically based on cache miss sampling
during run-time.

The chunk size in common DBMS varies significantly.
Some approaches define a chunk size in relation to a hard-
ware parameter [28, 20, 7, 25]. However, most approaches
state, that they adjust the chunk size such that the entire
chunk fits into a certain cache [5, 23]. Thus, common chunk
sizes match L1, L2 or L3 cache sizes. Other approaches de-
fine a fix number of tuples [15] or a fix block size like 64KB
[24]. Two extremes are the chunk size of one tuple used in
the classical volcano execution model [10] and the chunk size
of one column used in MonetDB/MIL [4].

Block-oriented processing [20] extends the volcano execu-
tion model by changing the number of tuples transferred be-
tween two operators from one tuple to a block or a chunk of
tuples. Thus, the data locality is improved and the over-
head of one operator call is amortized over multiple tu-
ples. In general, block-oriented processing increases the
performance as long as the entire block of tuples fits into
a cache [28]. Zhou and Ross [25] implement the block-
oriented approach by inserting buffers between certain oper-
ators which shows improved instruction cache performance.
Zukowski et al. [28] compare the row-wise storage layout
(NSM) and column-wise storage layout (DSM) in combina-
tion with block-oriented processing. They show, that the
storage layout strongly influences the performance of differ-
ent database operations.

2.3 Degree of Parallelism
A degree of parallelism has to be specified in any schedul-

ing strategy and has to take the type of operators in the
QEP into account. Database operators can be classified
into blocking and non-blocking operators. A blocking op-
erator, like sort or aggregation, needs to collect all input
tuples before it produces the first output tuple. In contrast,
a non-blocking operator, like selection or hash probe, pro-
duces output tuples on-the-fly. A sequence of non-blocking
operators in a producer/consumer relationship represents a
so-called pipeline. Blocking operators are parallelized by
exploiting intra-operator parallelism. Therefore, the input
of a blocking operator is partitioned into chunks and pro-
cessed in parallel. A scheduler implements intra-operator
parallelism by disassembling one operator into multiple op-
erator instances. During run-time, each operator instance
processes one chunk. Commonly, the number of instances
is determined by dnumber of input tuples

chunk size
e. In contrast, a

pipeline containing only non-blocking operators enables a
much higher flexibility for parallel processing. A sched-
uler can parallelize a pipeline by exploiting intra-operator
and inter-operator parallelism. Inter-operator parallelism
enables parallel processing of different operators without
blocking. Finally, independent parallelism can be exploited
if two pipelines exhibit no dependency. In this case, both
pipelines may be processed in parallel [9].

The actual implementation of dop during run-time has to
take the degree of thread cooperation into account. In gen-
eral, threads can be either working cooperatively together
on the same operator instance or each threads works on its
own operator instance. Cieslewicz et al. [7] propose a par-
allel buffer that is filled by a group of threads cooperatively
before the buffer is delivered to the next operator. Thus, all
threads work on the same operator instance. An alterna-
tive approach proposed by Cieslewicz et al. [8] implements a
strategy where a distinct chunk of tuples is assigned to each
thread. Thus, each threads processes one operator instance
independently.

3. QUERY TASK MODEL
In this section, we present our Query Task Model (QTM)

which opens a design space for database schedules. With
QTM, we generalize the modeling of parallel query execu-
tion such that different approaches become comparable. In
Section 3.1, we introduce QTM as a task model for query
execution before we describe the implementation of QTM
in Section 3.2. After that, we define QTM formally. The
formal definition consists of tasks and task configurations
(Section 3.3), processing strategies (Section 3.4), and queues
(Section 3.5). Finally, we describe different aspects of par-
allelism in QTM in Section 3.6.

3.1 QTM Overview
The task paradigm is a common abstraction for paral-

lelism in high performance computing [18]. A general task
model for parallel computing consists of tasks, units of exe-
cution (UEs), and processing elements (PEs). A task corre-
sponds a certain part of an algorithm and is implemented by
grouping a sequence of instructions. During execution, each
task is mapped to a unit of execution (UE) that is either a
thread or a process. A UE has to be executed by a process-
ing element (PE). A PE is a generic term for a hardware
unit that is either a processor or a machine [18].



Figure 2: QEP Transformation Process.

We extend this general task model to a model for paral-
lel query execution of database queries (QTM) that allows
us to express and compare different approaches. In partic-
ular, we have to include database specific constraints and
requirements. To execute a database query using a task
model, we have to create tasks from a query execution plan
(QEP), map tasks to UEs, and schedule UEs by PEs for ex-
ecution. In QTM, we create tasks by disassembling a QEP
at compile-time. Figure 2 illustrates our three-step query
transformation process to transform a QEP into a set of
tasks that is modeled in QTM. In this section, we describe
the transformation process conceptually. We leave the devel-
opment of a general framework for transforming an arbitrary
QEP into QTM tasks as future work. The transformation
process in Figure 2 proceeds as follows.

In a first step, we analyse a QEP to identify a set of
pipeline fragments with maximal length and generate a de-
pendency graph describing their relationships. The depen-
dency graph reveals ordering constraints between operators.
In a second step, we group operators into task configura-
tions (TC). Each TC represents a particular piece of work
of a QEP on a subset of data. Based on TCs, we describe
dependencies and potential concurrent execution for a group
of operators. A TC represents a blueprint that specifies the
work (operator sequence) and data (buffer size) for its tasks
(see Section 3.3). Furthermore, a TC defines three process-
ing strategies which specify task execution during run-time
(see Section 3.4). The mapping of operators to TCs ex-
hibits some degree of freedom. Possible mappings range
from a fine-grained mapping of one operator to one TC up
to a coarse-grained mapping of an entire pipeline to one TC.
Note, TCs are only used as an intermediate format during
the transformation process.

In a third step, we use TCs to instantiate as many tasks
as necessary to process all input tuples. Each task inherits
the operator sequence, buffer size, and processing strate-
gies from its task configuration. A task executes its opera-
tor sequence for each tuple in its buffer. Additionally, task
execution is specified by its inherited processing strategies.
Within a task, we encapsulate a particular piece of work of
a QEP as an operator sequence and a subset of data as a
chunk of tuples in a buffer. The number of tasks per TC is
determined by the ratio of input tuples and buffer size. As
the result of this transformation process, we obtain a set of
tasks that is modeled in QTM. With QTM, we extend the
notion of tasks proposed in previous work [6, 17, 16, 22] by
a generalized work and data specification and a declaration
of processing strategies which specify task execution during
run-time.

For the rest of this paper, we assume a QEP as input
that is modeled as a set of tasks in QTM. Thus, we focus on
comparing different query execution strategies within QTM.

3.2 QTM-DLB
With QTM, we model a QEP as a set of tasks. However,

the actual scheduling of these tasks depends on the run-time
implementation. A run-time implementation consists of two
processing steps. First, it has to establish a particular order
between tasks that satisfies the constraints introduced by a
QEP. Second, it has to manage task execution following a
scheduling strategy.

In this paper, we introduce QTM-DLB as a run-time im-
plementation of QTM. QTM-DLB implements a dynamic
load balancing (DLB) approach with one global task queue.
We decided to implement QTM using a DLB approach be-
cause it already based on the notion of tasks. Compared to
other DLB approaches [6, 17, 16, 22], QTM-DLB executes
generalized tasks specified in QTM. To establish a particular
order between tasks, we define a placement strategy (PS). In
QTM-DLB, we apply a PS as the last step during compile-
time to place tasks into the global task queue. Note, other
possible run-time implementations might use the volcano
execution model or a run-time scheduler as the scheduling
strategy. Thus, they might specify their run-time query ex-
ecution with QTM. In this case, one task in QTM might
represent a next call in the volcano execution model or a
operator call in a run-time scheduler.

The execution of tasks in a general task model is imple-
mented by a mapping of tasks to UEs. In QTM-DLB, we
choose to map tasks to threads because threads of the same
process share an environment and allow for fast lightweight
context switches. During run-time, the global task queue
is processed sequentially from its beginning to its end by
dequeuing one or multiple tasks by each UE. We assume,
each UE is able to process each task and that all tasks are
independent. Figure 3 illustrates the query execution with
QTM-DLB. At first, a UE dequeues a task from the head of
the global task queue. After that, a task dequeues as many
tuples as specified by its buffer size from an input queue,
applies its operator sequence to each tuple, and enqueues
qualifying tuples into a output queue. The distribution of
tasks among UEs can be applied either statically or dynam-
ically in a general task model. In QTM-DLB, UEs acquire
tasks dynamically on their own if computing capacities are
available.

The execution of tasks in a general task model requires
that UEs are scheduled by PEs for execution. In QTM-
DLB, this mapping differs for different DBMS. A DBMS
running on a single machine may refer to one processor as
one PE. In contrast, a distributed DBMS may refer to one
physical machine as one PE. In this paper, we focus on query
execution on a single multi-core machine.

QTM and QTM-DLB are general enough such that all
database scheduling strategies and chunk sizes shown in Fig-
ure 1 can be expressed in QTM and executed in QTM-DLB.
We express different query execution strategies and chunk
sizes with different task configurations, processing strate-
gies and placement strategies. Since QTM-DLB is based
on a dynamic load balancing approach, it omits a run-time
scheduler. Instead, QTM-DLB lays out a schedule during
compile-time that is flexible enough to adapt itself for differ-
ent run-time conditions. The actual schedule is determined
by the dynamic run-time behavior of processors that ac-
quire new work (tasks) on their own if computing capacities
are available. In contrast, the volcano execution model also
omits a run-time scheduler but its scheduling is static and



Figure 3: Query execution with QTM-DLB.

implicitly determined by its execution model. For the rest
of this paper, we refer to QTM as our model that specifies
query execution and QTM-DLB as a dynamic load balanc-
ing approach implementing QTM for query execution. In
the following sections, we define QTM formally.

3.3 Task Configuration
In QTM, we define a task configuration (TC) that groups

operators of a QEP. A task configuration TCm is instan-
tiated into n instances 〈taskm

0 . . . taskm
n−1〉. For the rest of

this paper, we refer to instance i of a task configuration TCm

as taskm
i . Each TC specifies a buffer B of size b in tuples

and an operator sequence Ol with operators 〈ol0 . . . oln−1〉
for its tasks. The operators in Ol satisfy a particular or-
der. Each tuple ti has to be processed by each operator
〈ol0 . . . oln−1〉 following the order of Ol. If tuple ti has been
deleted by operator oi, then ti will not be processed by the
remaining operator sequence 〈oi+1 . . . on−1〉. Additionally,
we define three processing strategies NTS, TISS, and TFS
for a TC that specify run-time execution for its tasks (see
Section 3.4). The number of instances per TC is defined
by dnumber of input tuples

buffer size
e. Each task is self-contained and

includes all information necessary to execute the operator
sequence for each tuple in its buffer.

3.4 Processing Strategies
In QTM, we define three processing strategies which spec-

ify run-time execution of tasks. All tasks of the same TC
share the same new tuple strategy NTS, task internal schedul-
ing strategy TISS, and a tuple fetch strategy TFS. In the
following, we present three QEP properties that require the
definition of these processing strategies.

First, relational operators might create multiple output
tuples from one input tuple. Thus, we define a new tuple
strategy (NTS) for each TC. Following Manegold et al. [17],
we employ two strategies for handling new tuples. With
NTSkeep, we refer to a strategy that keeps newly created
tuples of operator oi inside a task by adding them to its
buffer. Thus, new tuples are processed by the following
operator sequence 〈oi+1 . . . on−1〉. With NTSenq, we re-
fer to a strategy that creates new tasks for newly created
tuples. Therefore, new tasks are inserted into the global
task queue after the last task of the current TC. After that,
the original task processes the remaining operator sequence.
With NTSkeep, new tuples are kept on the same PE but the
amount of work per task increases; thus, introducing an im-
balanced task workload. On the other hand, with NTSenq,
the amount of work per task remains almost constant. How-

ever, newly created tasks are probably executed by another
processor; thus, reducing data locality.

Second, if an operators sequence consists of more than
one operator, different execution orders of tuples/operators
are possible inside a task. Thus, we define a task internal
scheduling strategy (TISS) for each TC. With TISSop, task
internal scheduling follows an operator-at-a-time approach
such that all tuples 〈t0 . . . tn−1〉 are processed by operator
oi before the next operator oi+1 is applied. Using TISSop,
a TC processing a pipeline of c operators instantiates c ∗
dnumber of input tuples

buffer size
e tasks with c−1 materializations be-

tween operators. With TISSbuf , task internal scheduling
follows a buffer-at-a-time approach such that each tasks
processes a chunk of tuples 〈t0 . . . tB−1〉 by each operator
〈o0 . . . on−1〉. Using TISSbuf , a TC processing a pipeline of
c operators instantiates dnumber of input tuples

buffer size
e tasks, each

processing the entire pipeline. We do not model partial op-
erator sequences inside tasks. If required, we would create
different TC for each partial operator sequence.

Third, tuples inside a buffer can be accessed using differ-
ent access patterns. Thus, we define a tuple fetch strategy
(TFS) for each TC. With TFSseq, we refer to a strategy
that fetches tuples sequentially inside each task. Thus, each
operator oi accesses tuples in a sequential order 〈t0 . . . tB−1〉.
With TFSzig, we refer to a strategy that fetches tuples using
a zig-zag access pattern. Thus, operator oi accesses tuples
in forward direction 〈t0 . . . tB−1〉 but operator oi+1 accesses
tuples in backward direction 〈tB−1 . . . t0〉. Thus, TFSzig

might increase data locality for large data sets.

3.5 Queues
In QTM-DLB, we define a global task queue Qtask as

a list of n tasks 〈task0 . . . taskn−1〉 in a particular order.
We refer to Qhead as the first element in Qtask; thus, the
task that will be dequeued next. We refer to Qtail as the
last element in Qtask; thus, a new task will be enqueued
at position Qtail+1. During run-time, tasks are processed
sequentially from Qhead to Qtail.

We define three operations on Qtask. First, enqbatch in-
serts a batch of tasks 〈task0 . . . taskn−1〉 into the Qtask fol-
lowing a placement strategy PS. Each taski is appended
at Qtail+1. This enqueue operation is used during compile-
time. Second, enq(taski,pos) inserts a single taski at posi-
tion pos into Qtask. For example, NTSenq requires these
enqueue operation to insert newly created tasks into Qtask

during run-time. Third, dequeuenum dequeues num tasks
starting from Qhead.

In QTM-DLB, we have to satisfy the constraints intro-
duced by a QEP. Thus, a synchronization point is required
if TCm+1 depends on TCm, i. e., all tasks of TCm have to
be processed before the first task of TCm+1 start process-
ing. Therefore, we define a barrier bar for Qtask. A barrier
guarantees, that all tasks 〈taskm

0 . . . taskm
n−1〉 of TCm finish

processing before a taskm+1
i of TCm+1 starts.

Finally, we define three different data queues. Each in-
put relation is modeled as a table queue Qtab. Each table
queue consists of n tuples 〈t0 . . . tn−1〉. Tuples in Qtab are
dequeued buffer-wise depending on the buffer size of the
accessing task. Qint defines an intermediate data queue for
materializations. Note, each blocking operator and each bar-
rier requires an implicit materialization of its result. With
Qout, we refer to a global output queue that stores the query
result.



3.6 Parallelism in QTM
With QTM, we are able to express three forms of paral-

lelism [9]. First, partitioned parallelism can be exploited by
partitioning the input of an operator such that all partitions
can be processed in parallel (intra-operator parallelism). In
QTM, we model one TC for each partitionable operator and
instantiate one task for each partition. Second, pipelined
parallelism can be exploited by processing the entire pipeline
without interruption or materialization. Note, operators in
a pipeline are non-blocking and do not interfere with each
other (inter-operator parallelism). In QTM, we model one
TC containing the entire pipeline as a operator sequence.
Additionally, we apply TISSbuf for task internal scheduling.
Third, independent parallelism can be exploited by execut-
ing independent pipelines in parallel (inter-operator paral-
lelism). In QTM-DLB, we support independent parallelism
by placing tasks from independent pipelines interleaved into
the global task queue.

We optimize parallel query execution in QTM-DLB by
four means. First, we improve temporal locality by group-
ing tuples into buffers and pipelines into operator sequences
for tasks. Thus, we increase the probability for tuples to
reside in cache for their entire processing. Furthermore, by
processing tuples in chunks, we amortize the overhead per
operator call through many tuples [20, 4]. Second, we im-
prove spatial locality by accessing tuples sequentially inside a
buffer. The sequential access pattern leads to an increased
cache line utilization and efficient prefetching. Third, we
achieve a high degree of parallelism by specifying indepen-
dent tasks that allow for asynchronous processing. Thus,
independent tasks mitigate dependencies and reduces syn-
chronization overhead. Fourth, we achieve high resource uti-
lization by a loosely coupling of processing units and tasks.

4. QUERY EXECUTION SCHEDULES
In this section, we model common database schedules with

QTM. Using a simple QEP, we demonstrate how common
DBMS would implement different schedules. We show, that
schedules mainly differ by their buffer size (chunk size) and
their applied task internal scheduling strategy (TISS). For
the following considerations, we assume one TC processing
a pipeline of n operators. We omit NTS and TFS because
they can be applied to any schedule. Figure 4 shows the
schedules presented in this section. The buffer size refers
to the number of tuples each task processes in a particular
schedule. The operator count specifies the number of oper-
ators in the operator sequence of each task. For example, a
task following a tuple-at-a-time + TISSbuf schedule would
process the entire pipeline with one tuple. In contrast, a
task following a tuple-at-a-time + TISSop schedule would
process only one operator with one tuple.

A tuple-at-a-time schedule performs one operator call for
each tuple. The volcano execution model is one common ex-
ample implementing this schedule [10]. We model a tuple-at-
a-time schedule by defining a buffer size of one. To support
row and column-oriented storage layouts, we utilize a fetch

function for each operator call to fetch the next tuple ti+1.
The actual implementation of the fetch function differs de-
pending on the storage layout. For a row-oriented storage
layout (NSM), one memory access returns the entire tuple.
For a column-oriented storage layout (DSM), the function
has to collect all required attributes from v columns; thus,

Figure 4: Query Execution Schedules in QTM.

resulting in v memory accesses. Considering performance,
one operator call per tuple results in a large overhead due
to many operator calls. We identify two possible operator
sequences. With TISSbuf , a task processes one tuple ti by
all operators 〈o0 . . . on−1〉. With TISSop, each task executes
one operator oi for one tuple ti. However, oi has to be pro-
cessed entirely for all tuples 〈t0 . . . tn−1〉 before oo+1 starts
processing. Thus, with TISSop, operators are processed in
a step-wise manner which requires materialization of inter-
mediate results. In contrast, with TISSbuf , tuples are only
materialized while percolating the pipeline.

A register-at-a-time schedule was introduced by Neumann
and implemented in Hyper [19]. This schedule combines
operators inside the same pipeline into one operator. The
combined operator processes as many tuples as fit into one
CPU register. Therefore, the buffer size depends on the size
of a CPU register and the size of a tuple. The combined
operator reduces the number of operator calls to one call per
pipeline per buffer. Therefore, the overhead per operator
call is amortized over all tuples in the buffer and over all
operators in the pipeline. Since the pipeline is compressed to
only one operator per pipeline, only one possible execution
order exists. Thus, we omit TISS in Figure 4. Although
Neumann [19] evaluates this approach for DSM, it would
also be applicable to NSM.

A buffer-at-a-time schedule performs one operator call for
each buffer. In general, the buffer can be of any size. How-
ever, previous work shows that a buffer size that matches a
hardware parameter exhibits the best performance [28, 20,
7, 25]. Common examples are the size of the L1, L2 or L3
cache. DB2 5.2 [20] as well as PostgreSQL 7.3.4 [25] im-
plement this buffer-at-a-time schedule. In addition to these
static buffer sizes, Cieslewicz et al. [8] introduce a buffer that
changes its size dynamically based on cache miss sampling.
To take the content of a buffer into account, we restrict the
buffer-at-a-time schedule to a NSM storage layout. A buffer
storing tuples of a NSM storage layout consists of the en-
tire tuple with all attributes. In contrast, a buffer storing
tuples of a DSM storage layout usually consists of attribute
values for a single column. Thus, we model the buffer-at-a-
time schedule only for the NSM storage layout and leave the
DSM storage layout for the vector-at-a-time schedule. The
operator sequences are similar to the tuple-at-a-time sched-
ule. However, instead of processing one tuple, a task follow-
ing TISSbuf processes all tuples in its buffer B at operator
oi before processing the same buffer at the next operator
oi+1. With TISSop, a task processes one buffer B with one
operator oi. However, oi has to be processed entirely for
all buffers 〈B0 . . . Bn−1〉 before oo+1 starts processing and
thus materialization is required. Considering performance,
the overhead per operator call for TISSbuf and TISSop is



amortized over all tuples in the buffer. Thus, the advantages
of the block-oriented processing [23, 20] are exploited. Ad-
ditionally, tasks following TISSbuf amortize their overheads
over all operators in the pipeline.

A vector-at-a-time schedule performs one operator call for
each vector of each column. DBMS implementing this sched-
ule are MonetDB/X100, C-Store, and DB2 with BLU. Mon-
etDB/X100 [5] and DB2 with BLU [23] attempt to hold
all data in caches, C-Store [24] processes blocks of 64KB.
The vector-at-a-time schedule is essentially a buffer-at-a-
time schedule but introduces one buffer per column. In
contrast, a buffer-at-a-time schedule introduces one buffer
for the entire relation or between operators. Additionally, a
buffer-at-a-time schedule determines the buffer size in rela-
tion to the size of an entire tuple. In contrast, a vector-at-
a-time schedule has to determine a separate buffer size for
each column in relation to the size of the attribute values.
The number of buffers increases with each additional col-
umn. One major advantage of a vector-at-a-time schedule
is its opportunity for vectorized processing. Vectorized pro-
cessing allows for the usage of Single Instruction Multiple
Data (SIMD) that showed an improved performance [28, 5].
Another important advantage of a vector-at-a-time schedule
is its increased buffer utilization if only a small fraction of
all attributes are accessed. In contrast, a buffer-at-a-time
schedule on a NSM storage layout would load unused data
into its buffer if only a small fraction of all attributes are ac-
cessed. The operator sequences are similar to the buffer-at-
a-time schedule but extend one call per buffer to one call per
buffer per column. The processing of TISSbuf and TISSop

inside the operator sequences remains unchanged but an ad-
ditional call for each columns is added. Note, the processing
of different columns per operator introduces an opportunity
for scheduling columns in different orders.

A column-at-a-time schedule performs one operator call
for each column. MonetDB/MIL [4] implements this sched-
ule. It requires a DSM storage layout and corresponds to
a vector-at-a-time approach with the entire columns as one
vector. However, when executing a column-at-a-time sched-
ule using multiple PEs, the entire column can be partitioned
into chunks, i. e., this schedule transforms into a vector-at-a-
time schedule. Processing a column entirely introduce addi-
tional costs for materialization of intermediate results; thus,
increases the memory consumption [4]. The buffer size corre-
sponds to the number of tuples in a column. With TISSbuf ,
a task processes one column coli entirely with operator oi
before processing the same column with the next operator
oi+1 With TISSop, a task processes coli by operator oi and
all columns 〈col0 . . . coln−1〉 have to be processed by oi be-
fore oo+1 starts processing.

A table-at-a-time schedule performs one operator call for
the entire table and can be found in OLTP databases that
apply a data manipulation operation to an entire table. To
support a row-oriented and column-oriented storage layout,
we utilize the fetch function introduced for a tuple-at-a-
time schedule. When executing a table-at-a-time schedule
using multiple PEs, the entire table can be partitioned into
chunks, i. e., this schedule transforms into a buffer-at-a-time
schedule. The processing with TISS are similar to a buffer-
at-a-time schedule with one buffer for the entire table.

An operator-at-a-time schedule represents a special sched-
ule that follows the StagedDB approach. This schedule is
implemented in STEPS and QPipe [12]. An operator se-

quence is divided into stages that represent operators. The
buffer size corresponds to the size of an input queue at each
stage. The stages exchange tuples via messages from one in-
put queue to another. While not stated, we assume STEPS
and QPipe work on a NSM storage layout because the proto-
types are based on Shore and BerkeleyDB which use a NSM
storage layout [12]. The actual operator sequence depends
on the applied scheduling algorithm. A simple round-robin
scheduling will call each operator for a fix time slice before
calling the next in a circular manner. However, due to back
pressure or other scheduling decisions, an arbitrary opera-
tor sequence is possible. Based on the scheduling algorithm,
each stage processes tuples in its input queue as long as its
time slice is valid or until its input queue becomes empty.

5. EVALUATION
In this section, we evaluate different schedules that are

modeled in QTM. At first, we describe our experimental
setup in Section 5.1. After that, we introduce our test sched-
ules in Section 5.2. Then, we compare them with respect
to run-time in Section 5.3 and resource utilization in Sec-
tion 5.4. Finally, we examine their scalability Section 5.5.

5.1 Experimental Setup

5.1.1 Prototype
We implement QTM-DLB as a prototype in C++. QTM-

DLB executes queries modeled in QTM (see Section 3.2). In
a preparation step, we create a set of tasks and place them
into a global task queue. The order of tasks and their config-
uration represent a schedule. In this paper, we exclude the
preparation step for our measurements and measure solely
query execution during run-time. Query execution in QTM-
DLB proceeds as follows. At first, each processor dequeues
a tasks from the global task queue. After that, each task de-
queues all tuples for its processing from an input or interme-
diate queue into its buffer and applies its operator sequence
to each tuple. The processing strategies of each task specify
the execution order of operators, the access pattern for tu-
ples in its buffer, and the processing of newly created tuples.
Finally, each task enqueues qualifying tuples into a global
output or intermediate queue. This sequence is repeated
until all tasks in the global task queue are processed.

Although tasks run asynchronously and mainly process
task-local data in their buffers, they have to synchronize on
shared data structures. In our prototype, we have to syn-
chronize 1) dequeuing of tasks from the global task queue,
2) dequeuing of tuples from an input or intermediate queue,
and 3) enqueuing of result tuples into a intermediate or
global output queue. In QTM-DLB, we synchronize these
three queue operations with atomic counters as proposed by
Cieslewicz et al. [7]. Thus, each enqueuing or dequeuing op-
eration of n tasks or tuples increments an atomic counter by
n. After that, a task can exclusively access tasks or tuples
from nold to nnew−1. Note, these three synchronization op-
erations represent the overhead introduced for each task in
QTM-DLB.

Within each task, bookkeeping of qualified tuples among
different operators is maintained by a bitmask. Bit i in a
bitmask represents the qualification of tuple i in buffer B.
Each operator applies it processing only if tuple i was qual-
ified by previous operators. Then, each operator updates
the bitmask using an AND operation for its qualified tuples.



Figure 5: TestCase: Multi-Level Join.

Finally, the last operator in a pipeline places all qualified tu-
ples into the global output queue. We leave tuple modifica-
tion inside a pipeline, e. g., a concatenation of two attribute
values, for future work.

In QTM-DLB, we implement a selection operator and a
hash join. Each tuple in an input relation consists of an
8 byte key and an 8 byte payload. The hash join is im-
plemented as a non-partitioning hash join following Blanas
et al. [3] with the improvement of an contiguous array for
buckets proposed by Balkesen et al. [2]. Each hash table
consists of small buckets with 32 entries per bucket. Each
bucket entry consists of an 8 byte key and an 8 byte pointer.
We implement the same the hash function as applied in Post-
greSQL1.

5.1.2 Workload
In our evaluation, we model different schedules for the

QEP shown in Figure 5. The QEP consists of three in-
put relations, one selection operator, and two hash based
equi-joins. The dataset is synthetically generated and con-
sists of three relations containing 30M tuples in ascending
order. We introduce skew by incrementing tuples with dif-
ferent values as shown in Figure 5. As a result, each join
has a selectivity of 0.5. Furthermore, the selection at the
beginning of the pipeline filters 5M tuples.

5.1.3 Hardware and Software
We evaluate our prototype on an Intel Xeon E7-4870 CPU.

The CPU contains of 10 physical cores, each supporting
hyper-threading. The cache hierarchy of each core is com-
posed of a separate 32KB L1 cache for instructions and data,
each 8-way set associative. Additionally, each core owns a
unified 256KB L2 cache for data and instructions, each 8-
way set associative. The L1 and L2 cache are exclusive to
each core. Finally, all cores share a 32MB 24-way set asso-
ciative L3 cache. We ran our experiments on an openSUSE
13.1 using a 3.14.4 kernel. Our prototype was compiled
with GCC 4.8.1 using O3 compiler optimizations. We mea-
sure performance counters using the PAPI framework2.

5.2 Test Schedules
For our evaluation, we implemented nine different sched-

ules for the QEP shown in Figure 5. In Figure 6a, we illus-
trate these schedules as a sequence of operators. We model
one operator as one TC and instantiate tasks as shown in
Figure 6b. In general, the buffer size determines the num-
ber of tasks per operator and is either fixed (Schedule 1-
3), matches a cache size (Schedule 4-6), or is determined

1http://www.postgresql.org/
2http://icl.cs.utk.edu/papi/

(a) Test Schedules.

(b) Test Configurations. (dop=4)

Figure 6: Test Cases.

in relation to the current dop (Schedule 7-9). In contrast,
the scheduling strategy determines the number and order
of operators as well as the number of materializations and
barriers.

We model Schedules 1-3 in QTM with different task-internal
scheduling strategies (TISS) as tuple-at-a-time schedules
(T-AAT). Schedules 1-3 represent three possible schedules
for the volcano execution model using a buffer size of one.
Since each operator instantiates one task per tuple, 30 mil-
lion tasks per operator are created. However, the total num-
ber of operators differ between Schedule 1-3 due to different
execution orders. Tasks in Schedule 1 and 2 build hash
tables B1 and B2 for relation S2 and S3 until the bar-
rier is reached. The barrier satisfies the constraint that the
first probe operator has to wait until all hash tables are
built entirely. We model Schedule 1 in QTM with TISSbuf .
Thus, each task processes the entire pipeline for one tu-
ple. In contrast, we model Schedules 2 and 3 in QTM with
TISSop. Thus, all tasks cooperatively finish the process-
ing of one operator and materialize their results before pro-
cessing the next operator. Note, materialization eliminates
pipeline parallelism and increases the number of tasks due
to an increased number of TCs. As shown in Figure 6a, we
combine a table scan and a hash build into one operator B1
or B2. Thus, Pipe2 and Pipe2 are reduced to one operator.
A pipeline containing only one operator allows only one pos-
sible execution order. Thus, TISS did not affect execution
order of B1 or B2.

In contrast to Schedule 1 and 2, we model Schedule 3 in
QTM with TISSop as a schedule executing a sequential join
order; thus, joins are not interleaved. The execution order
changes to 1) applying the selection to each tuple in S1, 2)
building the hash table for S2 and probing the intermedi-
ate result of the selection (S1) in B1, and 3) building the
hash table for S3 and probing the intermediate result of the
previous probe (P1) in B2. As shown in Figure 6a, the se-
quential join order changes the execution order and increases
the number of barriers. However, the total number of tasks
remains equal to Schedule 2.

We model Schedules 4-7 in QTM with TISSbuf as buffer-
at-a-time schedules (B-AAT). The buffer sizes match differ-
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Figure 7: Run-times for Test Schedules (dop = 4).

ent cache sizes. Schedules 4-6 determine their buffer size
such that all tuples fit into a cache line (Schedule 4), L1
cache (Schedule 5), or L2 cache (Schedule 6). Schedule 7 di-
vides the L3 cache between the number of executing threads
(dop). Thus, the buffer size is determined by d size of L3

dop
e.

Similar to Schedule 1, Schedule 4-7 exploit pipeline paral-
lelism but execute Pipe1 for a chunk of tuples. As shown
in Figure 6b, an increased buffer size reduces the number of
tasks per operator. The total number of tasks ranges from
186 to 22,5M. Note, Schedules 4-7 are common in the vol-
cano execution model using block-oriented processing or in
a cache-conscious run-time scheduler.

We model Schedules 8 and 9 in QTM with TISSbuf as
operator-at-a-time (O-AAT) schedules. The buffer size is
determined by dividing the input tuples equally between
available threads. Thus, the number of tasks is equal to the
number of threads (dop). Schedules 8 and 2 as well as 9 and
3 model the same execution order and number of operators.
However, the buffer sizes differ significantly. Schedules 2
and 3 model the smallest possible buffer size of one tuple
and Schedule 8 and 9 model the largest buffer with regard
to dop. These different buffer sizes impact the number of
tasks significantly. Schedules 8 and 9 might be found in
MonetDB [4].

5.3 Run-time
In Figure 7, we show the run-time in nanoseconds per in-

put tuple for each test schedule presented in Section 5.2. We
execute each schedule in QTM-DLB with a dop of 4. Fig-
ure 7 shows, that B-AAT Schedules 5-7 achieve the shortest
run-times and T-AAT Schedules 1-3 the longest. Further-
more, O-AAT Schedules 8 and 9 are slightly slower that the
B-AAT Schedules 5-7 but faster than B-AAT Schedule 4.

Schedule 1 implements the most efficient T-AAT schedule
that reduces the run-time by a factor of almost two com-
pared to Schedules 2 and 3. The main reasons are 1) the
reduced number of tasks and 2) the exploitation of pipeline
parallelism. Schedules 2 and 3 execute the same number
of tasks, materialize the same number of intermediate re-
sults, and do not exploit pipeline parallelism. However, they
model a different execution order that shows only marginal
impact on the run-time.

B-AAT Schedules 4-7 model differently sized buffers which
result in different numbers of tasks. Schedule 4 executes
22,5M tasks, each loading as many tuples as fit into a cache
line (4 tuples). Although, Schedule 4 decreases the run-time

by a factor of 5 compared to Schedules 2 and 3, the large
number of tasks results in the longest run-time of all B-AAT
schedules. Schedules 5-7 decrease the run-time by a factor of
2 compared to Schedule 4 and by a factor of 10 compared to
Schedules 2 and 3. However, the run-times for Schedule 5-7
are very similar. Schedule 5 executes about 40K tasks and
performs slightly worse than Schedule 6 executing roughly
5K tasks. Schedule 7 achieves the best overall run-time by
executing only 186 tasks.

O-AAT Schedules 8 and 9 execute fewer tasks than all
other schedules (only 20 tasks). As in Schedules 1-3, the
impact of a different execution order on the run-time is
only marginal. However, Schedules 8 and 9 with very large
buffers improve run-time by a factor of 10 compared to
Schedules 2 and 3 executing the same schedule with very
small buffers. In the next section, we present explanations
for these different run-times by sampling the query execu-
tion.

5.4 Time Distribution
We analyzed the utilization of the cache hierarchy by our

test schedules to explain the different run-times. We show,
that the cache hierarchy impacts the run-times to a high
degree. Figure 8 and Figure 9 summarize our sampling
results. Additionally, Figure 10 shows the breakdown of
misses. In these figures, a counter samples either data cache
misses (DCM), instruction cache misses (ICM), or misses in
a unified instruction and data cache (CM). Additionally, we
measure Translation Lookaside Buffer misses for data pages
(TLB DM) and instruction pages (TLB IM) as well as the
number of branch miss predictions (Branch MP).

5.4.1 Observations
As a first observation, Schedules 2 and 3 as well as 8 and 9

reflect similar counter values in Figure 8 and Figure 9. These
similar numbers of cache and TLB misses explain similar
run-times observed in Figure 7. However, the sequential join
execution of Schedules 3 and 9 causes slightly less misses and
thus improves the run-time marginally.

As a second observation, the improved run-time of Sched-
ule 1 compared to Schedules 2 and 3 can be attributed to
less data and instruction cache misses. The main reasons for
that are threefold. First, Schedule 1 exploits pipeline par-
allelism which reduces the number of data cache misses (L1
DCM & L2 DCM). Second, Schedule 1 executes less tasks
which reduces the number of instructions and instruction
related cache misses (L1 ICM & L2 ICM). Third, following
the improved data and instruction cache utilization, both
TLB cache misses (TLB DM & TLB IM) are reduced as
well as the number of L3 cache misses (L3 CM) and branch
mispredictions (Branch MP).

As a third observation, data cache misses of Schedules
8 and 9 are similar to Schedule 5. The small number of
four tasks per operator for Schedule 8 and 9 results in the
fewest instruction cache misses. However, the elimination of
pipeline parallelism and the required materialization result
in longer run-times compared to other B-AAT schedules.

The fourth observation is contrary to the general assump-
tion that a buffer that fits entirely into a private cache ex-
hibit less data cache misses [28, 20, 7, 25]. As shown in
Figure 8, this assumption does not hold for Schedules 1 and
4 using very small buffer sizes. Besides the huge number
of tasks, the reasons for that are twofold. First, Sched-



ule 1 cannot exploit spatial locality because one cache line
is shared among different tasks. Thus, each cache line is
loaded multiple times. Second, a small buffer size prevents
efficient prefetching. For example, if Schedule 4 is executed
by n threads, each tasks loads every n-th cache line (omit-
ting the dynamic run-time behavior). In contrast, a task
in Schedule 5 accesses 512 cache lines sequentially. Thus, a
hardware prefetcher may detect the access pattern of Sched-
ule 5 but not the access pattern of Schedule 4.

Finally, the miss breakdown in Figure 10 reveals a dif-
ferent distribution among schedules. Note, some misses are
hidden because of their marginal occurrence. The observa-
tions are fivefold. First, L2 DCM are more frequent than
the other misses. Second, TLB DM and L2 DCM are al-
most constant over all schedules. Third, L2 ICM and TLB
IM are negligible. Fourth, L3 CM are more frequent and
Branch MP are less frequent for larger buffer sizes (Sched-
ules 4-9). Fifth, L1 ICM are more frequent for smaller buffer
sizes (Schedules 1-4). Note, a time breakdown can be de-
rived from Figure 10 by multiplying the number of cache
misses with actual miss penalty. In the next sections, we
analyze the cache characteristics of the B-AAT Schedules
4-7 in more detail.

5.4.2 Data Cache Misses
Our sampling results for Schedules 4-7 in Figure 8 show,

that data caches misses in L1, L2, and L3 cache decrease
with increasing buffer size until the buffer size exceeds the
largest private cache (L2). After that, data cache misses
increase. The main reason for that originates from a differ-
ent exploitation of pipeline parallelism. Pipeline parallelism
enables data locality for tuples percolating the pipeline. In
an optimal case, the first operator in a pipeline loads all
tuples into the cache. Then, each consecutive operator will
suffer no cache miss because its data is already loaded. The
number of cache misses is reduced as long as the data set
fits into the cache. Unfortunately, this optimal case requires
that only the first operator in a pipeline loads the entire data
set. However, this requirement is usually not satisfied be-
cause consecutive operators like a hash probe may also load
data into the cache. Each additional data load increases
the probability that already loaded tuples are evicted be-
fore reuse (so-called cache-thrashing). As shown in Figure 8,
cache trashing occurs as soon as the buffer size exceeds the
private L2 cache. Starting from this buffer size, cache misses
increase up to a point where each data access results in a
cache miss and no data locality inside the pipeline can be
exploited. The TLB data cache misses follow this evolution.

5.4.3 Instruction Cache Misses
Our sampling results in Figure 9 show, that instruction

cache misses are correlated with the number of tasks. Thus,
schedules processing tasks with large buffers (Schedules 7-9)
decrease the total number of tasks and amortize their task
overhead over multiple tuples. Additionally, they increase
the locality of instructions by processing multiple tuples in
tight loops. The improved instruction locality results in less
instruction cache misses.

Compared to data cache misses, instruction cache misses
are more performance critical because they cannot be over-
lapped using out-of-order execution [12]. In the worst case,
the processor pipeline stalls until the instructions are fetched.
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This difference is the main reason why Schedule 7 is faster
than Schedule 6. Although Schedule 7 suffers more data
cache misses, the reduced number of performance critical
instruction cache misses are more crucial for the run-time.
TLB instruction misses and branch miss predictions follow
the characteristics of the instruction cache. Furthermore,
small tasks result in more branch mispredictions because
the number of branch targets are increased which pollutes
the branch target buffer.

5.4.4 Results
To sum up, we identified a trade-off between data and

instruction cache performance. We show, that a schedule
that is optimized for data cache locality does not necessarily
outperform a schedule optimized for instruction cache local-
ity. Overall, the cache performance can be adjusted by the
buffer size which impacts data cache as well as instruction
cache performance. We show, that a schedule that produces
medium sized tasks (Schedules 4-6) by determining its buffer
size based on cache size exploits data locality efficiently. On
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Figure 10: Breakdown of Misses.

the other hand, the high number of tasks introduce many
instructions; thus, causing many instruction cache misses.
In contrast, a schedule that produces large tasks (Schedules
7-9) cause less instruction cache misses due to a decreased
number of instructions and exploits instruction locality effi-
ciently. On the other hand, few large tasks cause more data
cache misses if the buffer size exceeds the data cache size.

5.5 Scalability
In Figure 11, we examine the scalability of our test sched-

ules. Starting at a dop of 10, hyper-threading is applied. In
general, hyper-threading interleaves threads at a fine granu-
larity and is beneficial if two threads execute different types
of work. For example, if one thread handles an I/O re-
quest and the other executes computation [26]. Although
hyper-threading introduces two logical cores per physical
core, both cores have to share many execution resources,
including memory bus and caches [26].

T-AAT Schedules 2 and 3 scale up to a dop of 11, then
stagnate between 12-14 before increasing run-time starting
from 15. However, the best reported speedups of nearly 1.4
with 13 cores for both schedules are only marginal. Even
worse, with 20 cores, Schedules 2 and 3 are nearly as fast as
running the same schedule with only two cores. Schedule 1
scales with the same characteristics but exhibits a slightly
larger speedup of two. The reasons for the poor scalability of
the T-AAT schedules are threefold. First, Schedules 1-3 can-
not produce enough independent work to overlap data cache
misses with useful computation. Schedule 1 scales slightly
better because it exhibits less cache misses and thus free up
memory bandwidth that is available for other cores. How-
ever, Schedules 1-3 are memory-bound. Second, threads exe-
cute tasks that perform similar work on different data. If ex-
ecuting two threads on the same core using hyper-threading,
both threads require the same execution units and thus the
benefit of hyper-threading cannot be exploited to its full ex-
tent. Furthermore, the available resources per thread are di-
vided by two and threads may evict tuples mutually. Third,
context switches between threads are less expensive with
hyper-threading but still introduce some overhead.

B-AAT Schedules 4-7 scale much better and do not in-
crease run-time if hyper-threading is applied. The main
reason for that are the more efficient exploitation of the
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Figure 11: Scalability

cache hierarchy. Therefore, more data accesses can be over-
lapped with computation and more data accesses can be
satisfied by private caches. Schedule 6 achieves the highest
speedup (8.3), followed by Schedule 7 (7.4), Schedule 5 (7.2),
and Schedule 4 (3.6). The shortest run-time is achieved by
Schedule 6 with a dop of 20. However, Schedules 6 and
7 compete for the best run-time in Figure 11. Schedule 6
achieves shorter run-times for a dop less than 10 and Sched-
ule 7 for a dop larger than 10. Overall, Schedule 6 achieves
the best run-time in 11 of 20 samples. The reason for this
competition is the trade-off between data and instruction
cache misses as described in Section 5.4. Therefore, Schedule
6 produces less data but more instruction cache misses and
Schedule 7 produces less instruction but more data cache
misses.

Schedules 8 and 9 exhibit same characteristics as Sched-
ules 5-7 but with slightly longer run-times and less speedup
of 7.1 for Schedule 8 and 6.9 for Schedule 9. The difference
can be attributed to the elimination of pipeline parallelism
and the materialization of intermediate results.

As a result, we identify a sweet spot where the ratio of
data locality and instruction locality produces the fastest
schedules. The sweet spot lies between a schedule with a
buffer size matching the largest private cache (Schedule 6)
and a schedule with a slightly larger buffer size that reduces
instruction cache misses (Schedule 7).

6. RELATED WORK
Approaches for dynamic load balancing in research vary

in the number of task queues and granularity of tasks [6,
17, 16, 22]. There are approaches using one global task
queue [17], one queue per thread per operator [6], one queue
per processor and one global queue [16], or one queue per
processor socket [22]. The granularity of tasks also vary
among different approaches. While one approach did not
state how to convert a QEP into a set of tasks [6], two create
tasks mainly from partitionable operators like aggregations
or hash builds [16, 22]. Manegold et al. [17] use the call of
one operator with one tuple as the basic granularity of one
task. However, neither of these approaches considers a task
granularity different from one operator call for one tuple.
Additionally, locality of data and instructions inside a cache



hierarchy and different execution orders are not considered.
Furthermore, we extend the notion of tasks by a generalized
work and data specification and a declaration of processing
strategies which specify task execution during run-time.

The optimal chunk size was only examined for a partic-
ular scheduling strategy. Padmanabhan et al. introduce
block-oriented processing that extends the volcano query
execution model to process a block of tuples. Zhou and
Ross [25] implement the block-oriented approach by insert-
ing buffers between certain operators to improve the instruc-
tion cache performance. Zukowski et al. [28] compare the
row-wise storage format (NSM) and column-wise storage
format (DSM) in combination with the block-oriented ap-
proach. However, neither of these approaches considers the
impact of different scheduling strategies nor take the ex-
ploitation of pipeline parallelism into account.

Previous work sampled commercial DBMS workloads to
identify the distribution between time spent for computa-
tion and time spent for waiting for data. In our context, the
OLAP workloads in [5, 11, 1] are most relevant. Ailamaki
et al. [1] discovered, that on the average, half of the execu-
tion time is spent in stalls while 90% of the memory stalls
are due to L2 data cache misses and L1 instruction cache
misses. Furthermore, they show that databases are particu-
larly ineffective in taking advantage of modern superscalar
processor capabilities [1, 5]. Our evaluation contributes to
this observation by adding the chunk size and scheduling
strategy as new dimensions that impact the distribution of
cache misses.

7. CONCLUSION AND FUTURE WORK
In this paper, we classified common databases by their

scheduling strategy and chunk size. Furthermore, we intro-
duced a Query Task Model (QTM) that allows us to ex-
press and compare different approaches for parallel query
execution. With QTM, we open a design space for database
schedules. In our evaluation, we examined how different
schedules exploit resources of modern CPUs. We showed,
that a schedule that is optimized for data cache locality
does not necessarily outperform a schedule optimized for in-
struction cache locality. Furthermore, we identified a sweet
spot where the ratio of data locality and instruction local-
ity produces the fastest schedules. Future work will focus
on the development of a general framework for transforming
an arbitrary QEP into QTM. Furthermore, we will investi-
gate work sharing among concurrent queries. Finally, we are
working on a cost model that predicts the costs of different
task configurations on different hardware architectures.
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