Dynamic and Transparent Data Tiering for In-Memory Databases in Mixed Workload Environments

Relevance Based Data Partitioning

Martin.Boissier & Carsten.Meyer @HPI.de
Motivation

- In enterprise systems data is typically kept up to 10 years
- High data access skewness (transactional & analytical workloads)
- Performance (by limiting query execution on hot data only)
- **Cost** (reduce allocation of main memory as required)
Preconditions

- Analysis of a big, real-life database systems incl. workload traces
- EMC cooperation provided 2nd storage device and dedicated API
- HYRISE - open source, hybrid, main-memory data storage engine
Relevance Based Partitioning

1. Individually split table columns,

2. Periodically (offline) into a hot and cold data segment

3. Based on workload characteristics

4. Using different storage classes for hot / cold data

5. Providing deterministic and transparent data access
Challenges

1. Data classification for mixed-workload: no blocks, no caching mechanism for hot data

2. Deterministic data access (e.g. hot only column scans)
Hot Data Views (HDV)

- Defined periodically on sampled historical workload statistics, e.g.
 - SELECT * FROM <tbl> WHERE id (8873, …)
 - SELECT a, b, c FROM <tbl> WHERE b > 2014-05-25
- Classify hot data (horizontally and vertically)
- Used to determine query execution (data access) strategy
EMT API / NAND Flash

- PCIe NAND Flash device
- EMT API (linux kernel module)
 - alternative to mmap, bypassing OS
 - optimized for flash device
 - deterministic caching (coloring), read-ahead strategies
- Used for cold data segments only
Implementation

- **Tiering Run**: Periodical optimization of the data allocation
- **Tiering Columns**: Persisted information of data allocation
- **Tiering Check**: View matching against HDVs before query execution
Evaluation / Benchmark

- 3x OLAP queries, 100x OLTP queries
- Different hot query ratio (50%, 65%, 80%, 95%)
- 20% hot data

- **Full In-Memory**: 1 GB data allocated in main memory - no memory pressure
- **Full In-Memory with RBP**: query optimization due to RBP
- **Tiered Memory with RBP**: 0.2 GB hot data in main memory + 10% cache size for remaining 0.8 GB data = 0.28 GB main memory
- **Tiered Memory**: 0.28 GB main memory for cache
Results / Insights

While workload skewness towards hot data increases:

- There is no performance impact for *Full In-Memory* setup

- *Tiered Memory* leverages increasing skewness

- *Relevance Based Partitioning* improves Full In-Memory and Tiered Memory setup
Ongoing research

- Hot Data Views:
 - Automated generation based on workload statistics
 - Definition using application knowledge
- Separate dictionaries for hot and cold data
- Tiering check for join queries
Related Work

Thank you