Towards Adaptive Resource Allocation for Database Workloads

Cong Guo and Martin Karsten
David R. Cheriton School of Computer Science

OUTLINE

- Motivation
- Background
- Performance Measurement
- Controller Design
- Evaluation
- Conclusion

MOTIVATION

- Adaptive resource allocation
 - » more resources ≠ better performance
 - » improve resource utilization
- Feedback-based control
 - » used for optimization rather than regulation
 - » a fine-grained metric for online measurement

BACKGROUND

- Study case: CPU cores allocation
- Model: a concave performance curve
- Problem: search for the stationary point

BACKGROUND

- Fuzzy control for optimization problems
 - » no specific system model required
 - » no reference input required
 - » handle uncertainties and disturbances
 - » incorporate human knowledge via qualitative rules

GENERALIZATION

PERFORMANCE MEASUREMENT

- Online performance measurement
 - » various application-specific metrics
 - » no one suitable for long-running analytical workloads
 - » User-level Instruction Per Time

USER-LEVEL INSTRUCTION PER TIME

- User-level instructions
 - » estimate the number of productive instructions
 - » measured by hardware performance counters during runtime
- Wall-clock time instead of CPU cycles
 - » CPU frequencies may change
 - » idle cycles are not covered
 - » total or average cycles?

INNER FUZZY CONTROLLER

Basic Control Rules

INNER FUZZY CONTROLLER

Basic Control Rules

INNER FUZZY CONTROLLER

Basic Control Rules

SELF-ADAPTOR

- Detect workload changes
 - » observe UIPT changes for a window of time
 - » reduce cores if UIPT decreases more than a threshold
 - » detect workload increment via a probing allocation
- Find the minimum allocation

EVALUATION

- Resource allocation
 - » Linux control groups
 - » no assignment of queries to cores explicitly
- CPU-bound workload
 - » sufficient buffer pool size
 - » disable synchronous logging

EVALUATION - UIPT

Database Workloads – TPC-E

EVALUATION - UIPT

Database Workloads – TPC-H

TPC-H Workload – start from 8 cores

TPC-H Workload – start from 8 cores

TPC-H Workload – start from 20 cores

Adaptive to Changing TPC-H Workloads

CONCLUSION

- A fine-grained performance metric
 - » agile feedback for long-running workloads
 - » a good proxy for application-level performance metrics
- An allocation algorithm based on fuzzy control
 - » no accurate system model required
 - » comparable performance
 - » further improvement
- Apply to other problems
 - » power efficiency
 - » software management problems

EVALUATION - UIPT

Memcached

EVALUATION - UIPT

PARSEC Benchmark

	Correlation	Correlation
Program	between	between
	Time and UIPT	Relative Changes
blackscholes	-0.9273	-0.9946
bodytrack	-0.9531	-0.9939
canneal	-0.9764	-0.9886
dedup	-0.9944	-0.9987
facesim	-0.9927	-0.9919
ferret	-0.8073	-0.9931
fluidanimate	-0.8994	-0.9907
freqmine	-0.8425	-0.9873
raytrace	-0.9664	-0.9979
streamcluster	-0.9604	-0.9875
swaptions	-0.9945	-0.9910
vips	-0.8635	-0.9911
x264	-0.8924	-0.9891

TPC-E Workloads – start from 8 cores

TPC-E Workloads – start from 20 cores

Adaptive to Changing TPC-E Workloads

