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ABSTRACT
The massive parallelism and faster random memory access
of Graphics Processing Units (GPUs) promise to further
accelerate complex analytics operations such as joins and
grouping, but also provide additional challenges to optimiz-
ing their performance. There are more implementation al-
ternatives to consider on the GPU, such as exploiting dif-
ferent types of memory on the device and the division of
work among processor clusters and threads, and additional
performance parameters, such as the size of the kernel grid
and the trade-off between the number of threads and the
resulting share of resources each thread will get.

In this paper, we study in depth offloading to a GPU
the grouping and aggregation operator, often the dominant
operation in analytics queries after joins. We primarily fo-
cus on the design implications of a hash-based implemen-
tation, although we also compare it against a sort-based
approach. Our study provides (1) a detailed performance
analysis of grouping and aggregation on the GPU as the
number of groups in the result varies, (2) an analysis of the
truncation effects of hash functions commonly used in hash-
based grouping, and (3) a simple parametric model for a
wide range of workloads with a heuristic optimizer to au-
tomatically pick the best implementation and performance
parameters at execution time.

1. INTRODUCTION
Despite the recent performance gains that in-memory da-

tabase systems have brought to the relatively mature tech-
nology for processing complex SQL analytics queries, user
requirements for ever-faster performance over ever-larger da-
tabases has sparked increasing interest in exploiting Graph-
ics Processing Units (GPUs) for further accelerating these
queries. GPUs promise massive parallelism and faster mem-
ory access, particularly for the random accesses that are so
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prevalent in joins and grouping operations that dominate
the execution time in analytical queries.

As is true for traditional CPU-based database processing,
the best implementation and parameter settings for GPU
processing depend upon (a) the given SQL query, (b) the
data distribution (such as cardinality and skew), and (c)
the hardware it is run on.

But building database engines for execution on GPUs
presents many additional challenges. Often entirely new ap-
proaches and algorithms are necessary to adequately exploit
the massive parallelism GPUs offer. There are more im-
plementation alternatives to consider on the GPU, such as
exploiting different types of memory on the device (global
memory and local scratchpad memory) versus the CPU’s
memory, and the division of work among processor clusters
and threads. To make matters worse, there are also more
performance parameters, such as the size of the kernel grid
and the trade-off between the number of threads and the
resulting share of resources each thread will get. Grouping
and aggregation, e.g., for the SQL “GROUP BY” clause, is
one of the most time-consuming operators in any database
system, especially when performing cubing in On-Line Ana-
lytic Processing (OLAP) systems, and dominates the perfor-
mance time in systems that encourage de-normalized (pre-
joined) schemas for performance reasons [9, 27] or that even
do not support joins at all, such as “NoSQL” systems, e.g.,
MongoDB.

In this paper, we study in depth offloading the grouping
operator to a GPU. We primarily focus on the design im-
plications of a hash-based implementation, although we also
compare it against a sort-based approach in Section 5.2. Our
study provides (1) a detailed performance analysis of group-
ing and aggregation on the GPU as the number of groups
in the result varies, (2) an analysis of the truncation effects
of hash functions commonly used in hash-based grouping,
and (3) a simple parametric model for a wide range of work-
loads with a heuristic optimizer to automatically pick the
best implementation and performance parameters at execu-
tion time. We make two simplifying assumptions. First, we
assume that the intermediate data structures, such as the
hash tables, fit into the device memory of the GPU so that
no spilling to main memory or disk occurs. Second, we make
the simplifying assumption that there are no queries execut-
ing concurrently on the GPU. We do not think that these
simplifications are too restrictive in terms of the workloads
that can be run. First of all, GPUs today come with sig-
nificant memory – up to 12 or 24 GB. Second, since OLAP
workloads seek to minimize the response time, it makes sense

1



columnar
table

Host

Main Memory

sc
a
n

d
ir

e
c
ti

o
n

GPU

Device Memory

Hash Table

PCIe
read

scan

pinned
buffers

Figure 1: System Setup.

to allocate all available resources in order to finish a given
query quickly.

The paper is organized as follows. The next section de-
scribes the setup and the hash-based implementation of the
grouping operator. Section 3 describes a list of unexpected
and surprising observations made from a number of experi-
ments, and presents a deep analysis for the observed effects.
Section 4 contains an evaluation of the parameter space and
introduces a heuristic approach to select “good” parameters
at execution time for different queries and data distribu-
tions. We provide a comparison of different placements for
the hash table as well as a comparison of hash grouping with
a sort-based approach in Section 5. The last two sections
discuss related work and the paper’s conclusions.

2. GPU GROUPING AGGREGATION
This section describes the system set-up and our imple-

mentation of the grouping hash tables.

2.1 System Setup
Figure 1 shows the setup used throughout the paper. Un-

like other earlier work, we do not assume that the entire data
set fits into the device memory of the GPU [12]. Instead,
the only restrictive assumption we make is that the interme-
diate data structures, i.e., the hash table for the hash-based
grouping operator, fits into the device memory. The base ta-
ble is stored on the host system. More precisely, it is loaded
from stable storage such as disks, or in our case, SSDs, into
main memory. Both the on-disk and in-memory representa-
tions are in columnar form.

Data transfers from the SSDs into the host memory and
into the GPU have to be overlapped for maximum efficiency.
This is achieved by first splitting the rows to be scanned
into strides with a fixed number of rows. A stride of an
INTEGER column usually amounts to ≈ 32 MB. In a first
stage, the columns of the next stride are read from the SDDs
into pinned buffers in the host memory, one buffer per col-
umn. The current stride that was read in the previous step
is available in a second set of column buffers. Since all col-
umn buffers are backed by pinned memory, they are directly
accessible from the GPU in the second stage via zero-copy
access (available via Universal Virtual Addressing (UVA) in
NVIDIA GPUs [22]) as shown in Figure 1. The load ac-
cesses that the GPU performs to fetch the column values
during the table scan are aligned and coalesced, i.e., neigh-
boring threads in the GPU load adjacent words in memory.
This permits a high ingest bandwidth. We achieved > 90 %

of the maximum theoretical bandwidth of the 16-lane PCI
Express 3.0 (PCIe) link at the transaction layer.

Alternatively, we could have used a three-stage approach:
(1) SSD to host memory, (2) explicit host to device memory
copy, and (3) column scan out of device memory. While
this approach is recommended for non-coalesced memory
access patterns (but non-coalesced accesses to host mem-
ory are prohibitively slow!), we found the bandwidth of the
zero-copy access sufficient for our application setup. Fur-
thermore, it reduces the pipeline from three to two stages
and does not require column buffers in the device memory.

2.2 Group-By Implementation
In this section, we first provide a high-level overview of

the implementation of the group-by operator. The imple-
mentation is illustrated using the following simple group-by
query over a table of orders in a store:

Query A:

SELECT zip, 1-AVG((chargedamount-tax)/ordertotal)

FROM orders

GROUP BY zip

This query calculates the average discount offered to cus-
tomers grouped by zip code. Here, we assume that zip is
an INTEGER while the other three columns are of type REAL.
The query consists of the following elements:

expr := (chargedamount− tax)/ordertotal

aggregate := (c, s)

initial aggregate := (0, 0)

merge
(
(c, s), v

)
:= (c + 1, s + v)

final
(
(c, s)

)
:= 1− s/c

expr is the argument expression in the AVG aggregate. The
state for this aggregate is a tuple (c, s) consisting of a count c
of values and sum s of values. The initial state of the aggre-
gate is (0, 0). The merge function adds a new value v to the
aggregate. The value v is the result of evaluating expr. At
the end of the aggregation, the finalizer function calculates
the result 1-AVG(..) specified in the SELECT clause of the
query from the final aggregation state (c, s). We limit our
discussion in this paper to algebraic aggregates with con-
stant aggregate state, and leave the DISTINCT aggregate
case for future work.

The implementation of the group-by operator and the
data flow within the operator are illustrated in Figure 2.
The operator consists of five steps and involves three differ-
ent GPU kernels. The Init kernel in step 1 in the figure ini-
tializes the hash table, i.e., it sets all keys equal to EMPTY
and initializes the aggregation state. For the query shown
above, the aggregation state is set to (0, 0). The Init ker-
nel only accesses the device memory and so completes very
quickly.

The majority of the time is spent in the Scan kernel dur-
ing step 2 , in which the group-by aggregation is performed.
In the Scan kernel, the GPU threads first load the column
values, each one from a separate row, and compute the ar-
gument expressions of the aggregate functions. For the ex-
ample query above, the expression expr is evaluated to a
value v. Then the threads update the aggregate state that
corresponds to the zip value they loaded earlier, as deter-
mined by the merge

(
(c, s), v)

)
function. If a thread cannot

find an entry for its zip code in the hash table, it inserts a
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Figure 2: Group-By data flow.

new value and merges the value v into the initialized aggre-
gation state. During this insert, the thread also increments
a global group counter (shown in Figure 2) via one global
atomicInc operation. Although this global atomic counter
represents a potential contention point for the threads, an
atomic operation is only performed when a key is encoun-
tered for the first time and inserted into the hash table. No
atomic writes to this global counter are performed during
the subsequent updates for this key.

After the scan over the input data is complete and the
Scan kernel has terminated, the group counter is read back
into the host (Step 3 in Figure 2). This result count is

used in Step 4 to allocate a sufficiently large result buffer
in the host memory that can hold the results of the group-
by operation. Afterwards, the Finalizer kernel is launched
in step 5 . It scans the hash table and the remaining ex-
pressions on all non-empty buckets. For example Query A,
shown above, this remaining expression is 1 − s/c. The re-
sults are written back into host memory, again via zero-copy
access.

Generation of Group-By Kernels. The three kernels for
the grouping operator are query dependent. The Init ker-
nel depends on grouping keys and the aggregate functions,
the Scan kernel on the aggregate function and expressions,
and the Finalizer kernel on the aggregate function and ul-
timately on the SELECT clause1. The kernels need to be
generated ahead of time as “prepared SQL statements” or
as dynamic statements at execution time. The discussion
of the kernel generation is beyond the scope of the paper.
Here, we assume that the three kernels from Figure 2 are
generated by some means and only discuss the performance
impact from an algorithmic and parametric point of view.
There are various ways by which these kernels can be gen-
erated at execution time. One possibility is by using the
OpenCL clCreateProgramWithSource(..) API call [19].
Another approach could be based on NVRTC [23], the C++

run-time compilation of CUDA 7.0, or directly on NVIDIA’s
PTX driver API [24].

Hash Table: Open-Addressing with Linear Probing.
We begin our discussion with the simplest possible hash ta-
ble implementation, shown in Figure 3. The figure depicts
the textbook implementation of a hash table with open ad-
dressing. The hash table is an array of hash buckets that

1If the query also contains a HAVING clause, the corre-
sponding predicate needs to be evaluated in the Finalizer
kernel.
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Figure 3: Hash table implementations with a glob-
ally shared hash table in device memory.

contain three 32-bit elements for the example query: the key
and the two aggregates, count and sum. During an update
for a given key, the hash value of the key is computed and
mapped (by remainder division or by selecting a subset of
the bits from the hash value) to one of the hash buckets
k. In this simple scheme, collisions are resolved with linear
probing, i.e., if the bucket is already occupied by another
key, the next free buckets k + 1, k + 2, etc., are searched
until either that key or an empty bucket is found.

When an empty bucket is found, it will be initialized by
(1) placing the key into the table, (2) incrementing the count
from the initial value (zero), and adding the argument value
to the sum field. Since the hash table is globally shared by
all threads running on the different processors, the update
of that bucket’s fields have to be performed atomically, as
illustrated by this pseudo-code:

uint32_t* hashtable = ...

update(bucket k, uint32_t key, float arg)

{

BEGIN TRANSACTION

uint32_t x = hashtable[3*k]; // current key

if (x == EMPTY_MARKER)

hashtable[3*k] = key; // insert key

else if (x != key) {

// bucket k not empty and keys do not match

ABORT TRANSACTION and try bucket k+1

}
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// update aggregate state

hashtable[3*k+1] += 1; // update count

hashtable[3*k+2] += arg; // update sum

COMMIT

END TRANSACTION

}

Unfortunately, the GPU does not provide hardware sup-
port for transactional memory, and latching the entire hash
bucket for the duration of every attempted update would
severely limit parallelism and hence performance. Instead,
we can decompose the single atomic operation into atomic
updates of each of the bucket’s three fields. For the latter,
modern GPUs do provide some hardware support. Hence,
we can re-write the update code for our simple group-by as
follows:

uint32_t* hashtable = ...

update(bucket k, uint32_t key, float arg)

{

uint32_t x = hashtable[3*k]; // current key

if (x == EMPTY) {

// try inserting key

old = atomicCAS(&hashtable[3*k], key, EMPTY);

if ((old != EMPTY) || (old != key))

return failure; // lost race for bucket k

} else if (x != key) {

return failure; // key collision on bucket k

}

// update aggregate state (count, sum)

atomicAdd(&hashtable[3*k+1], 1);

atomicAdd(&hashtable[3*k+2], arg);

return success;

}

The update code first loads the key of the bucket and
checks whether it is equal to the EMPTY marker. If so, it
tries to overwrite the value with the key value. The oper-
ation is implemented using an atomic Compare-And-Swap
(CAS). The operation can have three possible outcomes: (1)
old == EMPTY indicates that no other thread has updated
this memory location since the load into x. (2) The value
returned by CAS is equal to the value of the key that the
thread is trying to write. This means that another thread
successfully inserted the same key. (3) The returned value
corresponds to a different key. In this case, the calling thread
lost the race for the insert. In the other two cases, however,
it can proceed with updating the aggregation state. This
is implemented again via atomic operations. The order of
these updates does not matter.

While this code correctly implements example Query A,
there are several questions and concerns whether this ap-
proach would also work for a broader range of group-by
queries. We discuss these questions below:
What is the value of the EMPTY marker? — Clearly, the
empty marker corresponds to one value out of the key do-
main, such that there cannot be any key with the same value
as the EMPTY marker. Typically, it is assumed that a marker
value is chosen that does not occur in the key space. This is
also an option here, and can easily be guaranteed if the value
for key is an encoded value instead of the actual key itself
(e.g., in systems like DB2 BLU [26]). The encoded space
is thus just reduced by the one value used for the EMPTY
marker. If operating on encoded keys is not possible and

Table 1: Hardware support [24] for aggregation
functions and data types (aggregate implementa-
tion: HW atomic = in hardware, CAS = in software
using Compare-and-Swap, ext32 = sign-extend to
32-bit and HW atomic).

MAX MIN SUM

SMALLINT ext32 ext32 ext32
INTEGER HW atomic HW atomic HW atomic
BIGINT HW atomic HW atomic HW atomic
FLOAT CAS CAS HW atomic
DOUBLE CAS CAS CAS
DECIMAL CAS CAS CAS

a special value cannot be set aside for EMPTY, the hash
mapping can be modified such that a key that has the same
value as the EMPTY marker is mapped to a special bucket
“outside” of the hash table.
Which are the supported types and aggregate functions? —
Our prototype system supports the data types and aggrega-
tion functions listed in Table 1. Not all atomic functions are
available for all data types on NVIDIA GPUs. The miss-
ing functions have to be implemented “by hand” using CAS
operations in a loop. SMALLINT types must be extended to
the next larger data type that is supported by the hardware,
which unfortunately increases the size of the hash table.
How is the hash table sized? — We assume that we obtain
an estimate of the group-by cardinality ahead of time such
that we can size the hash table accordingly. Modern com-
mercial systems employ quite sophisticated query optimizers
that can provide these estimates. Unfortunately, correlation
between columns and expressions on columns make it very
difficult for the optimizer to provide accurate estimates. For
DB2, we observe that correlated columns always lead to an
over-estimate of the cardinality, in the worst case the prod-
uct of the cardinality of the individual columns. Although
over-estimation avoids an overflow of the hash table, it could
create hash tables that are too big to fit within the GPU’s
device memory. We are treating this case in future work.
How are overflows of the hash table handled? — In open ad-
dressing, the hash table is full when a thread cycles around
the entire hash table and arrives back at the starting bucket
into which the key was initially hashed, without ever find-
ing that key or an EMPTY bucket. The thread then sets
a special global trap flag and terminates. To prevent other
threads from unnecessarily repeating this expensive traver-
sal, they should periodically poll the global trap flag. We
tried to use the special kernel trap instruction to intention-
ally abort the entire kernel, but we found that this damages
the GPU context, preventing us from re-executing the ker-
nel once we allocated a larger hash table. If the hash table
overflows in our prototype, we double the size of the hash
table and simply rerun the query.
What is the support for wider and combined keys? — Cur-
rent NVIDIA GPUs support CAS for 32- and 64-bit words
only. Multi-column keys can be implemented as long as they
fit the largest data type (64-bit). Wider keys that take up
more than one 64-bit word have to be treated differently
than shown above. The relaxed memory ordering model of
modern NVIDIA [22, §B.5] and AMD [3] GPUs further ex-
acerbate the problem. Our current solution for these cases
is to revert to latching the entire bucket.
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Figure 4: Performance of initial group-by implementation, measured as execution time of a table scan over
335 million rows, on a GTX Titan, hash table with 50 % fill factor, and 14× 1024 threads.

3. OBSERVATIONS
We tested the simple hash-based group-by described in

Section 2 on an NVIDIA GTX Titan GPU using 14 thread
blocks (the number of SMX processors on the GPU) and
1024 threads/block. The allocated hash tables were twice
the size of the group count, providing the desired fill factor
of 50 %. We use the 32-bit FNV-1a hash [10] as a hash
function. We map the hash value into the bucket via modulo
division. The group-by was performed on a table with 335
million rows consisting of four INTEGER columns:

CREATE TABLE atable (

col1 INTEGER NOT NULL,

col2 INTEGER NOT NULL,

col3 INTEGER NOT NULL,

col4 INTEGER NOT NULL

);

The values in col1 are independent, uniformly distributed
and random in the range of [0, 109). This distribution results
in scattered memory accesses with minimal caching opportu-
nities. By contrast, non-randomized or skewed distributions
generally have more localized memory accesses and make
better use of the GPU cache and, thus, lead to better per-
formance. Our data distribution can thereby be considered
as the worst-case scenario. To analyze the performance as a
function of the number of groups, we use the following query
that uses the MOD parameter to limit the number of groups
output:

Query B:

SELECT MOD(col1, ?), COUNT(*)

FROM atable

GROUP BY MOD(col1, ?);

We study the impact of the data transfers on the over-
all performance by extending the SELECT clause of Query
B with expressions that reference more columns. Ideally,
we would expect the execution time for these variants of
Query B to be determined by how many columns are ref-
erenced, as shown in Figure 4(a). The GPU can read from

the host memory via zero-copy access at a peak speed of
11.8 GB/s in our setup. Hence, we would expect an execu-
tion time that is inversely proportional to the total size of the
accessed columns, i.e., the four equi-spaced lines shown in
Figure 4(a). However, the actual performance we observed
is very different, as shown in Figure 4(b). We observe that:
(1) the performance does not remain constant as we increase
the number of groups by adjusting the MOD parameter in the
query. The resulting curves have the shape of a bath tub.
(2) The runtime has a high variability when only one col-
umn is accessed. The execution time can have large jumps
for certain group combinations. This is not a measurement
artifact – the numbers are in fact repeatable. (3) Accessing
more than one column appears to hide some of this vari-
ability. (4) The execution time increases for few groups and
(5) sharply increases for > 100 million groups.

Focusing on the 1-column query for the moment, we can
distinguish five differing regions in which different phenom-
ena appear to dominate. Figure 5 shows the ranges of these
five regions enumerated as I, . . . , V. Unfortunately, we do
not have insight information from NVIDIA on their hard-
ware that would provide clear explanations for the different
behaviors. In order to provide an explanation, we combine
the publicly available hardware descriptions with extensive
profiling via performance counters.

Region I: Contention. The group count, and thus the
hash table, is very small. For a globally shared hash table,
this leads to contention that limits the overall performance.
Though NVIDIA provides very little detail about the imple-
mentation of atomic operations in Kepler, we believe that
the following is a plausible way by which atomic operations
are implemented efficiently in L2. Beginning with the Kepler
GPU architecture, atomic operations on device memory are
performed in ALUs in the L2 cache [25], which is shared by
all processors on the GPU. Atomic operations, e.g., atomic
additions used for updating a SUM aggregate, are treated
as store instructions. The operations are then routed to the
ALUs based on their target memory address. A FIFO buffer
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Figure 5: Regions with different behavior for Query
B: SELECT MOD(col1,?),COUNT(*) FROM atable GROUP BY

MOD(col1,?) (GTX Titan, 50 % fill factor, 14 × 1024
threads)

in front of each ALU enqueues the operations before they
are processed and the memory locations in L2 are updated.

The downside of this approach is that updates to the same
hash bucket, or to buckets that are located on the same
cache line, are sent to the same ALU. For small numbers
of groups or a highly skewed distribution of the grouping
keys, this introduces a work imbalance on the ALUs and,
thus, contention. NVIDIA states that the hardware is able
to handle between 1–8 atomic operations/cycle/processor
in an ideal scenario. In our example, the size of the hash
table bucket is eight bytes, so there are 16 hash buckets per
128-byte cache line. We clearly need more than 16 groups
to occupy more than one cache line and, presumably, ALU
that handles the atomic. From Figure 5, the upper end of
this region I is about 100 elements. We discuss ways to avoid
this contention later in Section 5.1.

Region II: L2 & Spiky Performance. The execution time
of our group-by implementation is very spiky in Region II.
The execution times in this region correspond to the access
time for the input columns, given the PCIe bandwidth of
≈ 11.8 GB/s. If it were not for the spikes, the performance
in the second region would be entirely dominated by the
available PCIe bandwidth. But what causes these spikes?
In region II, the hash sizes are large enough that contention,
which dominated performance in region I, no longer has a
significant impact. The region contains hash tables that are
≤ 1.5 MB, i.e., that still fit into the L2 cache on the GTX
Titan. Puzzled by the spikes that can be up to 4× higher
than the base performance limited by the PCIe bandwidth,
we repeated the experiment multiple times, assuming we
would observe a non-deterministic artifact. However, the
spikes persisted, and at the same locations! After digging
deeper, we found out that the spikes were due to collisions
of the hash mapping, i.e., the FNV-1a hash function fol-
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Figure 6: Scatter plot comparing execution time
using FNV-1a and Murmur3 hashing for Query
B: SELECT MOD(col1,?),COUNT(*) FROM atable GROUP BY

MOD(col1,?) (GTX Titan, 50 % fill factor, 14 × 1024
threads).

lowed by the modulo division mapping, and a serialization
effect due to false sharing of hash buckets located in the
same cache line. FNV-1a is known as a good hash function.
We confirmed that by studying the distribution of 32-bit
hash values. The problem was introduced when mapping
the 32-bit hash values into hash buckets. This mapping
did not sufficiently preserve the uniformity of the computed
hash values, especially for small and compact key domains
(keymax − keymin � 220). By contrast, we did not see per-
formance issues for values that were chosen randomly from
large domains (> 220). The modulo operation in the group-
ing expression of our benchmark query effectively produces
such a compact the key domain. Compact key domains are
also quite common in real workloads, e.g., for sequential or-
der keys. Curious how other commonly-used hash functions
would perform, we repeated our experiment with different
hash functions. Here we only show the results of the best-
and the worst-performing hash functions. Figure 6 depicts a
scatter plot of the different execution times using the FNV-
1a and the Murmur3 [4] hash functions. We show a fine res-
olution in the number of groups to illustrate the variance.
Indeed, FNV-1a has a variance of more than three orders of
magnitude! Murmur3, however, has a lower variance but,
in general, a higher minimal runtime. We conclude that the
collisions introduced by the hash-value-to-bucket mapping
is more uniformly distributed for Murmur3 and with fewer
outliers, resulting in a more predictable performance than
with FNV-1a. Having learned this lesson, we will use Mur-
mur3 as the hash function in the remainder of this paper.

Region III: Hash Table > L2. In region III we observe
the expected increase in execution time when the hash table
grows beyond the L2 cache capacity. The execution time
gradually increases and remains constant when almost every
access results in a miss.
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Region IV. We are not sure what happens in region IV.
Region IV starts at a hash table size of about 200 MB. The
behavior looks like missing the next level of cache; however,
L2 is already the last level cache on the GPU. The trans-
lation look-aside buffer (TLB) is also organized as a cache,
and we believe these effects can be influenced by the first
level TLB cache. However, lacking insider information, we
cannot be entirely sure.

Region V: TLB issues. The jump at the beginning of Re-
gion V corresponds to the 2 GB TLB limitation that was
pointed out earlier by Kaldewey et al. [17].

4. CONFIGURATION PARAMETERS
In the previous section, we analyzed the performance as

a function of the number of groups in our group-by imple-
mentation. In this section, we evaluate the impact of the
chosen parameters on the execution, without changing the
structure or algorithm of our group-by implementation. We
identified two parameters that can be influential: the hash
table size and the CUDA grid parameters.

Hash Table Size and Fill Factor. In our previous ex-
periments, we chose a fill factor of 50 %, which results in
a hash table size that has twice the number of entries of
the expected number of groups. This fill factor is usually a
good tradeoff between size and insert/lookup performance.
A larger hash table would produce fewer conflicts on insert,
and therefore a shorter lookup path, but it also consumes
more space in device memory and cache. To evaluate the
impact of the hash table size, we ran our initial experiment
again using the Murmur3 hash function with varying fill
factors. We chose three adaptive hash table sizes using the
fill factors of 25 % (4x #groups), 50 % (2x #groups), and
83 % (1.2x #groups), and one fixed-size hash table, which
is set to the size of the L2 cache (1.5 MB, about 200,000
entries in our test scenario). The results are shown in Fig-
ure 7. Region I is still dominated by the atomic throughput
for all our test cases. Region II shows the actual impact
of the fill factor on execution performance. Here all hash
tables fit in the L2 cache, and the performance is bound
by bucket contention and linear probing. We can see that
the fixed hash table performs best because it has the small-
est fill factor in most cases. The fill factor of 25 % has a
slightly worse performance. The higher fill factors have an
even worse performance due to much more contention in the
hash table. In the passage from Region II to III, we can see
that the fixed L2 version is performing worse because the fill
factor and the contentions are growing until the hash table
is too small for the actual data. In this part, the fill factor
of 50 % performs best because it has less bucket contention
than the 83 % fill factor and consumes less memory than
the 25 % fill factor, where, in this case, efficient caching is
not possible. The advantage is lost when the hash table no
longer fits in cache, in the last part of Regions III and IV.
In Region V, the 2 GB TLB problem hits every version at
a different number of groups, because the sizes of the hash
tables are different. There, the 83 % fill factor version per-
forms best. These results convinced us that we do need to
adapt the hash table size and fill factor in order to get the
best possible performance for any number of groups.
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Figure 7: Different hash table fill factors and their
behavior. (GTX Titan, Murmur3, 14×1024 threads)

CUDA Grid Parameters. The second parameter we can
change is the CUDA grid configuration. The grid configu-
ration specifies a blocks× threads combination:

total #threads = blocks ∗ threads

Threads combined in a block can share resources, and they
are guaranteed to be executed on the same multiprocessor.
However, multiple blocks can be executed on one processor
at the same time to hide memory latency. One block can
contain between 1 and 1024 threads [21]. NVIDIA GPUs
execute up to 32 threads simultaneously, so a block should
contain a minimum of 32 threads to allow the hardware to be
utilized. Usually, shared memory usage limits the number of
threads per block, but since we do not use shared memory in
our implementation, we are free to use any configuration of
blocks and threads. In our implementation, the total work
of an input data stride is divided automatically between the
total number of threads. To evaluate the different grid pa-
rameters, we tested the number of threads in power-of-two
steps from 23 = 8 up to 210 = 1024 threads and the num-
ber of blocks in multiples of the number of multiprocessors
(in our case 14). We tested the grid configurations exten-
sively and found three different behaviors. Representatives
of these behaviors are shown in Figure 8. In detail, we show
our implementation with 1,000 groups (behavior similar to
Regions I and II), 1 million groups (similar to Regions III
and IV), and 200 million groups (Region V). For these tests
we used a fill factor of 50 %.

Figure 8(a) shows that the ideal grid configuration is great-
er than or equal to 14,336 total threads, but less than or
equal to 229,376 total threads, with a minimum of 64 threads
per block. If the total number of threads is lower than the
lower threshold, there are not enough threads to saturate
the PCIe bus with memory requests and to hide memory
latency. If there are more threads than the upper thresh-
old, the scheduling overhead seems more significant to the
execution time.
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(a) Hash table for 1,000 groups.
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(b) Hash table for 1 million groups.
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(c) Hash table for 200 million groups.

Figure 8: Evaluation of grid parameters for three different number of groups (GTX Titan, Murmur3, fill
factor 50 %). The performance is encoded from black (worse) to white (best).

Figure 8(b) shows a different behavior. Here, it seems
beneficial to have 7,168 or more total threads if we only use
32 threads per block. The number of threads can be ex-
plained with the caching behavior. For 1 million groups,
the hash table does not fit in the L2 cache, so each thread
has to access global memory, unless the data is in the cache
by chance. Usually, a thread has to access only one cache
line during a lookup or insert, since the cache-line size is
128 bytes, accommodating 16 hash table buckets in our test
scenario. Assuming that the hash bucket for a given key is
on average in the middle of a cache line, a second cache line
needs to be loaded only if the linear probing goes beyond 8
steps. With 14,336 threads running simultaneously (origi-
nal configuration), 1.75 MB will be loaded for the first cache
line. Since this does not fit into the L2 cache (1.5 MB),
the threads are evicting each others’ cache lines, so that
linear probing, even within the same cache line, could re-
sult in multiple loads from global memory. However, with
7,168 threads, only 0.875 MB are loaded, fitting perfectly in
the L2 cache, which results in “undisturbed” linear probing
for each thread. Having even fewer threads would benefit
from the same effect, but it also under-utilizes the system,
causing worse performance. More threads are possible if
there are only 32 threads per block, because our test GPU
can only schedule and execute 16 blocks simultaneously on
one multiprocessor [21], generating 32 threads ∗ 16 blocks ∗
14 multiprocessors = 7,168 threads running simultaneously.

Figure 8(c) shows the grid configurations for the 2 GB
problem. We assumed in the previous section that there is
high pressure on the TLB cache, which results in bad per-
formance. Surprisingly, the performance improves when we
reduce the number of threads and therefore take away some
of the pressure on the TLB. This works even below the 32
threads per block that are needed to utilize the multiproces-
sors.

From the results shown in Figure 8, we chose the best-
performing configurations for the different behaviors, and
evaluated the configurations in our initial test scenario with
growing numbers of groups. Specifically, we chose the fol-
lowing blocks × threads configurations: 14×1024, 112×64,
and 112 × 8. The results are shown in Figure 9. As ex-
pected, the single configurations are optimal in the regions
for which they were selected. Please note the bad perfor-
mance of 112 × 64 and 112 × 8 when the execution is not
bound by the L2 cache or the 2 GB problem. Also inter-
esting is the speedup of these two compared to the initial
setting (14 × 1024) in their specific regions. In Region III,
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Figure 9: Best performing grid configurations.
(GTX Titan, Murmur3, fill factor 50 %)

112× 64 achieves a 1.2× speedup, and in Region V, 112× 8
achieves a 2.2× speedup compared to the initial setting. We
did not find better suited grid configurations for Region IV.

Simple Rule-based Optimizer. Finally, we can take the
parameter insights for the hash table fill factors and the
CUDA grid configurations and build a simple model that
switches between the settings, depending on the estimated
number of groups. The model’s decisions can be done in
two steps by (1) setting the optimal hash table and (2) set-
ting the optimal grid configuration. Both decisions can be
described by a set of rules, where the first applicable rule is
chosen. Rules for the hash table size:

1. Use L2 as the hash table size if the fill factor is below
50 %.

2. Use 50 % fill factor if the hash table is smaller than
2 GB.

3. Use 83 % fill factor for the rest.

When the hash table size has been decided, the grid can be
easily determined by these rules:
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Figure 10: Optimized execution applying the pro-
posed rules. (GTX Titan, Murmur3)

1. Use 14× 1024 if the hash table is smaller than 4 times
the L2.

2. Use 112× 64 if the hash table is smaller than 2 GB.

3. Use 112× 8 for the rest.

The final evaluation of our test scenario is shown in Fig-
ure 10. Murmur3 has a more reliable performance than
FNV-1a, but is mostly slower than FNV-1a. Our changes to
the hash table size made the Murmur3 performance compa-
rable to the best-case FNV-1a performance, while also being
reliable. We achieve a speedup of up to 4.4× compared to
the original version using Murmur3 or FNV-1a, and we are
able to work with up to 1.8× more groups because of the
smaller fill rate for large numbers of groups (> 2 GB).

Besides the promising speedups, we could not fix the prob-
lems caused by the atomic contentions or the significant
2 GB problem by only changing parameters. To make fur-
ther improvements, we would need to change our grouping
operator significantly at the algorithmic and implementation
levels, which we consider next.

5. ALGORITHMIC APPROACHES
In the last section, we discussed the parameter selection

for an implementation having a single hash table. Now,
we describe two different algorithmic changes. First, we
study how to reduce contention in case the group-by has few
groups. Then, we briefly discuss sort-based aggregation and
compare it with the hash-based approach described earlier.

5.1 Hash table placement
In order to reduce contention on the atomic when the

group-by contains few groups, we introduce multiple hash
tables into which the groups are inserted during the scan.
Before calling the Finalizer kernel, the partial aggregates
from the different hash tables are aggregated and inserted
into a final global hash table. We show two alternative place-
ment strategies. In the first strategy, we place the hash ta-
bles into processor-specific shared memories. Each of these
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Figure 11: Performance of alternative implemen-
tations for group-by operators for low cardinality.
(GTX Titan, Murmur3, 50 % fill factor)

hash tables is only shared by the threads running in a par-
ticular thread block on a processor. The advantage is two-
fold: By distributing the inserts/updates over multiple hash
tables, we reduce the contention on the atomic updates. Ad-
ditionally, shared memories are co-located with the proces-
sors and are faster than the shared L2 cache. In the second
placement strategy, we provide a private hash table to each
worker thread, such that no sharing occurs. Since there are
many threads on each processor, the hash table cannot be
placed into shared memory for capacity reasons. Instead,
we place the hash tables in device memory.

Figure 11 compares the performance on a GTX Titan of
these new distributed hash table strategies against the single
globally shared hash table from the previous sections. We
can see that for block-private hash tables and after 6 groups,
the execution time quickly drops to a constant 0.11 sec, i.e.,
the limit imposed by the available PCIe bandwidth. We test
two configurations for thread-private hash tables. First, we
use a minimal configuration with 192 threads/block. This
choice makes sure that we occupy all compute cores of a
processor on the GTX Titan. In this setting, tables with up
to 73 buckets fit into the L2 cache of the GPU. The second
configuration uses 1024 threads/block, which corresponds to
the maximum number of threads per block that is supported
by the GPU. Now, only hash tables with up to 13 buckets
fit into L2. Note, however, that the configuration with 1024
threads/block is faster than 192 threads/block over the en-
tire measured range. Thus, cache misses do not play a role
here. The larger thread count is able to hide the miss la-
tencies and is faster due to the higher degree of parallelism.
We can now extend our rule for region I: if we anticipate a
cardinality of ≤ 6, we switch to thread-private hash tables
with a 14x1024 thread configuration. Otherwise, we use the
approach in which the hash tables are placed in shared mem-
ory and shared by the threads of a block. Beyond region I,
we switch to the global hash table approach as described in
Section 2, because the hash table does not fit into shared
memory anymore.
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Figure 12: Unstrided and strided sort-based group-
ing aggregation

5.2 Sort vs. Hash-based Group-By
Instead of hashing, grouping can also be implemented

using sorting [18]. In this section, we compare two sort-
based grouping implementations with the hashed grouping
described earlier. We use the CUB [20] (version 1.8.2) and
Thrust [16] (version 1.4.1) libraries that provide efficient im-
plementations of the level sorting and reduction operations
we need for the grouping operator.

The first implementation is non-strided (see Figure 12(a)),
that is, the entire key column from the input table is copied
into the GPU. The key column is then sorted using the
device-level radix sort from CUB, denoted as 1 . The sorted
keys, and thus the runs of the same key, are reduced with
a sum operator on a vector consisting of only 1 value. This
segmented reduction [5] produces the count aggregate and
is computed using DeviceReduce::ReduceByKey from CUB,
2 . Due to the out-of-place implementation of the sort and

the ReduceByKey operation, the available GPU memory is
essentially cut in half.

The implementation that works on strides is shown in Fig-
ure 12(b). As in the hash-based approach described earlier,
the table is processed in strides of rows. For every stride of
rows, the partial aggregate is computed via radix sort ( 1
in Figure 12(b)) and then by sum reduction with a vector of
1s whose length is equal to the size of the stride 2 . Next,
the aggregate of this stride of rows needs to be merged into
the partial aggregate computed so far. This is accomplished
by merging the two pre-sorted sequences in parallel ( 3 in
Figure 12(b)), using thrust::merge_by_key. We use the
Thrust library for this operation, as there is no such func-
tion available in CUB at the time of writing. Finally, the
merged sequences are reduced 3 to obtain the new aggre-
gate.

Figure 13 compares the two sort-based grouping algo-
rithms with the previous hash-based approaches. The hashed
grouping contains the optimization for small group cardi-
nality described in Section 5.1. It can be seen that hash-
based grouping outperforms the two sort-based alternatives
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Figure 13: Hash- vs. sort-based group-by for Query
B: SELECT MOD(col1,?),COUNT(*) FROM atable GROUP BY

MOD(col1,?) (GTX Titan, 50 % fill factor for hash
based group-by)

for up to 200,000 groups. After that, the unstrided sort ap-
proach outperforms hashing. For less than 200,000 groups,
the hashing algorithm is faster, with its single pass over the
input. Sort-based grouping has higher initial costs and re-
quires multiple radix passes. For more than 100,000 groups,
the hash table grows beyond the L2 size, the scan speed
drops, and gets overtaken by sort.

An interesting observation is that strided sort is always
worse than hashing. Strided sort is necessary to overlap the
I/O from nonvolatile storage with the GPU processing in a
real system. The CUB and Thrust code assume that the
inputs are located in device memory. However, a complete
column of a table may not fit in memory. Hence, the ta-
ble is scanned in strides of rows, as previously described for
the hashed grouping. The aggregate for each stride must
be merged with the partial aggregate accumulated thus far.
This merging happens out-of-place, so for the merging ag-
gregate of each stride, the old partial aggregate needs to
be moved in memory. This is true even when replacing the
merging strategy depicted in Figure 12(b) with a merge tree
consisting of pair-wise merges. In summary, we found that
sort-based hashing only provides an advantage if it can be
done in an unstrided fashion.

6. RELATED WORK
Hash tables are widely used for grouping, aggregation, and

joining in GPU-accelerated database systems, as well as in
other fields like computer graphics. Alcantara [1, 2] ana-
lyzes different GPU hashing approaches, including cuckoo
hashing, chaining, and open addressing. In Alcatara’s work,
several probing functions and fill rates were evaluated. How-
ever, the problems arising with different hash table sizes and
grid configurations were not discussed.

Yuan et al. [28] use cuckoo hashing for joins and aggre-
gation. For the latter, they build the hash table on the
group-by keys first and aggregate columns in a second step
by scanning the hash values. Cuckoo hashing uses multiple
hash functions and actively reorganizes entries in the hash
table to reduce the number of lookups. Similar to cuckoo
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hashing is Robin Hood hashing by Celis [8], in which hash
table entries are reorganized depending on the number of
lookups needed to find an entry. Garćıa et al. [11] further
refine this approach for the GPU. The result is a small
number of lookups for all entries and an only slightly larger
number of lookups in the worst case. This is especially use-
ful for GPUs, since no thread will stall others by having
to do many more lookups. However, we chose to keep en-
tries that were inserted in place without reorganizing. Since
we are PCIe-bandwidth bound in most cases, we can afford
to do more lookups while keeping the algorithm and data
structure simple.

He et. al [13, 14] use hashing in hash indexes optimized
with a multi-pass scatter and gather operation. They use
chaining for the hash table entries. However, the problem
with chaining is the unknown number of entries per hash ta-
ble bucket, which cannot be handled efficiently by the GPU,
where no dynamic memory allocation is supported between
multiple kernel executions.

In this paper, we use open addressing for the hash table
performing our group-by aggregation. Kaldewey et al. [17]
use open addressing for the hash table implementing their
hash join on a GPU, with a constant hash table fill rate of
50 %. Bordawekar [6] proposes an open addressing approach
with multi-level bounded linear probing, where the hash ta-
ble has multiple levels to reduce the number of lookups dur-
ing linear probing. Again, we are mainly PCIe-bandwidth
bound, so we can afford these lookups in preference to a
simple implementation.

The GPU-based database systems from Breß et al. [7] and
Heimel et al. [15] both implement sort-based grouping ag-
gregation.

7. CONCLUSIONS
In this paper, we have evaluated different implementa-

tions of the grouping operator for GPUs, comparing hash-
based grouping with sort-based grouping, and assessing the
performance impact of several key parameters of those al-
gorithms as the number of groups varies over a wide range.
All implementations maintain the temporary data structures
for the aggregation in the GPU’s device memory, while we
stream the input columns from the host memory into the
GPU. Unlike previous work, we include these data transfers
in our end-to-end analysis. Although our implementation
of the grouping algorithms was relatively straightforward,
the performance effects seen for different numbers of groups
were rather unexpected and surprising. We divided these ef-
fects into five regions, and explained the anomalous behavior
for each region in detail. Through this analysis, we found
better configurations and designed simple rules to adapt to
the workload. For example, we showed experimentally that
hash-based grouping dominated sort-based grouping, except
in the rare case when the input data was small enough that it
could be processed in one stride. We determined that a pri-
vate hash table per thread worked better for a small number
(< 6) of groups, a local hash table per thread block worked
well when it fits into shared memory, and a global hash ta-
ble was better for hash table sizes beyond the GPU’s shared
memory. For the latter, we determined experimentally how
to adjust the hash table size and fill factor dynamically to
trade off bucket contention with cache utilization. Lastly,
we found the best combinations of CUDA grid parameters
to optimize throughput.

This in-depth analysis provided insights that enabled us
to improve both the performance and robustness of our ini-
tial implementation significantly by: (1) identifying flaws
in and changing the hash function we used, and (2) op-
timizing the performance for a given number of expected
groups via simple rules that adaptively adjust combinations
of: (a) the grouping algorithm, (b) whether to localize hash
tables or not, (c) the hash table’s fill factor, and (d) the
CUDA grid parameters. Our analysis demonstrates empiri-
cally how GPU performance can benefit from analyzing the
performance in detail for different algorithms, data struc-
tures, and parameter settings.

Finally, we think that the observations we made and the
optimizations we performed are also applicable to other da-
tabase operators and algorithms that we may run advan-
tageously on a GPU. For example, hash joins also employ
large hash tables to store join payloads, so should benefit
from our analysis and optimization rules. Other operators
with random memory access patterns, such as index accesses
or binary search, should also benefit from the observations
described in this paper. Therefore, our optimizations are
likely to improve an entire family of algorithms being exe-
cuted on GPUs.
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