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ABSTRACT
Asymmetric read/write storage technologies such as Flash are be-
coming a dominant trend in modern database systems. They intro-
duce hardware characteristics and properties which are fundamen-
tally different from those of traditional storage technologies such
as HDDs.

Multi-Versioning Database Management Systems (MV-DBMSs)
and Log-based Storage Managers (LbSMs) are concepts that can
effectively address the properties of these storage technologies but
are designed for the characteristics of legacy hardware. A critical
component of MV-DBMSs is the invalidation model: commonly,
transactional timestamps are assigned to the old and the new ver-
sion, resulting in two independent (physical) update operations.
Those entail multiple random writes as well as in-place updates,
sub-optimal for new storage technologies both in terms of perfor-
mance and endurance. Traditional page-append LbSM approaches
alleviate random writes and immediate in-place updates, hence re-
ducing the negative impact of Flash read/write asymmetry. Never-
theless, they entail significant mapping overhead, leading to write
amplification.

In this work we present an approach called Snapshot Isolation
Append Storage Chains (SIAS-Chains) that employs a combination
of multi-versioning, append storage management in tuple granular-
ity and novel singly-linked (chain-like) version organization.

SIAS-Chains features: simplified buffer management, multi-version
indexing and introduces read/write optimizations to data placement
on modern storage media. SIAS-Chains algorithmically avoids
small in-place updates, caused by in-place invalidation and con-
verts them into appends. Every modification operation is executed
as an append and recently inserted tuple versions are co-located.
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Figure 1: SIAS-Chains and Traditional (SI) Invalidation: (A)
Transactions T1, T2 and T3 update data item X; (B) Data item X
now comprises 3 versions; (C) Version organization and invali-
dation scheme under the traditional (SI) approach as a doubly-
linked list, causing write overhead due to version invalidation
and SIAS-Chains as a singly-linked list, where new versions are
appended thus optimizing write I/O.

SIAS-Chains is implemented in PostgreSQL and evaluated on
modern Flash SSDs with standard update-intensive workload. The
performance evaluation under PostgreSQL shows: (i) higher trans-
actional throughput - up to 30%; (ii) significantly lower response
times - up to 7 times lower; (iii) significant write reduction - up
to 97% reduction; (iv) reduced space consumption and (v) higher
tolerable workload.



1. INTRODUCTION
Database approaches and techniques based on multi-versioning

have been around for a while and enjoy wide system support (both
commercial and open-source). Under such approaches multiple
versions of each data item may physically co-exist, whereas every
transaction operates against a snapshot of the database comprising
all versions it is allowed to see for consistent execution. Read op-
erations simply operate on the latest committed version visible to
them and are therefore never blocked, yielding good read perfor-
mance. An update operation produces a new version of the updated
data item and invalidates the predecessor version. There are several
factors, that contribute to the proliferation of multi-version tech-
niques: 1. Their characteristics are in-line with enterprise work-
loads [24]. 2. Multi-version approaches inherently account for
the properties of asymmetric read/write storage technologies (such
as Flash or Non-Volatile Memories). Common properties of these
technologies that distinguish them from traditional storage tech-
nologies (RAM, spinning disks) are: (i) read/write asymmetry (reads
are much faster than writes); (ii) high I/O parallelism; (iii) low (ran-
dom) write performance; (iv) endurance issues and wear.

Snapshot Isolation (SI) is introduced in Berenson, Bernstein et
al. [6] and defines the general concurrency control algorithm mak-
ing no claims about the physical version organization. Every tuple
version is augmented with two timestamps (creation- and invalidation-
timestamp) that are part of the physical version record. An updating
transaction modifying a data item sets its transactional timestamp
as the invalidation timestamp on the old version as well as the cre-
ation timestamp on the new version (Figure 1). Hence old versions
of a data item are physically invalidated (in-place) as new versions
are created and different versions of a data item form a logical order
based on timestamps (creation- and invalidation-timestamp). The
version invalidation implies two page updates, which in the general
case are performed as in-place updates and result in random writes.
Although several design alternatives exist [25], many systems im-
plement it precisely as described above, which is suboptimal for
asymmetric storage technologies.

Figure 1 illustrates the invalidation process in SI and SIAS-Chains:
Following the history (Figure 1.A ), three Transactions (T1, T2, T3)
update data item X in serial order resulting in a relation that con-
tains three different tuple versions of data item X . T1 creates the
initial version X0 of X . T2 issues the first update (Figure 1.B).
Under the traditional approach (SI), X0 is invalidated in-place by
setting its invalidation timestamp, subsequently X1 is created. The
update issued by T3 proceeds analogously and X1 is invalidated
in-place while X2 is created as a new tuple version (Figure 1.C).

In contrast, SIAS-Chains creates a new version, containing a
backwards reference to its predecessor. Hence updating X , results
in the creation of X1, which implicitly invalidates X0 avoiding the
need of physical in-place modification (Figure 1.C). All versions
of a given data item X contain the same unique virtual tuple ID
(V IDx) and form a simply-linked list (version chain). The newest
version is always known and is called an entrypoint to the chain
(data item). This will be explained in more detail in Section 4. The
SIAS-Chains LbSM appends just the newly created versions X0,
X1 and X2 to a reserved database page. Once a given threshold
is reached the page is appended to stable storage, resulting in sig-
nificantly fewer write I/Os. In this paper we exploit the important
fact that versions are separate entities, which can be individually
moved, (physically) grouped, read and checked for visibility. The
goal is to facilitate out-of-place updates, address read/write asym-
metry and improve endurance. The contributions of the present
paper are as follows:

(i) We propose the new Snapshot Isolation Append Storage -

Chains (SIAS-Chains) algorithm, which treats the sequence of tu-
ple versions as a singly-linked list (Figure 1) combining it with an
LbSM. SIAS-Chains LbSM operates on fine-granular append units
– tuple versions. It alleviates random writes and immediate in-place
updates, hence reducing the impact of Flash read/write asymmetry.
In contrast, traditional LbSMs introduce mapping and space man-
agement overhead as well as I/O granularity issues, leading to write
amplification.

(ii) The version invalidation scheme is a vital part of the MV-
DBMS: tuple versions of a data item are marked with timestamps
to facilitate versioning. Each modification of a data item leads to a
creation of a new tuple version and the invalidation of the old tuple
version. Under Snapshot Isolation (SI) the old version is marked
with an invalidation timestamp, leading to a physical (in-place) up-
date (Figure 1). The SIAS-Chains approach introduces a new in-
validation scheme leaving the old tuple version unchanged. SIAS-
Chains no longer follows the paradigm of addressing each tuple
version individually: multiple versions of a tuple are addressed as
a unit. In this context, we also propose new criteria for version
visibility.

(iii) SIAS-Chains is implemented in PostgreSQL, which required
a major database redesign. The experimental evaluation under TPC-
C-style workload and different Flash and HDD storage settings in-
dicates: (a) higher transactional throughput (2x); (b) significantly
lower response times; (c) significant write reduction (97% less is-
sued write I/Os); and (d) reduced space consumption.

The rest of the paper is organized as follows. In Section 2 we
present related approaches. A short introduction of MV-DBMSs is
given in Section 3. We describe the SIAS-Chains algorithm in Sec-
tion 4, providing comparison and delimitation to SI and illustrating
its functionality with several examples. Section 5 presents the ex-
perimental evaluation results and we conclude with a summary in
Section 7.

2. RELATED WORK
The concept of organizing data item versions in simple chrono-

logically ordered chains has been proposed in [12] and explored in
[27, 9] in combination with MVCC algorithms and special locking
approaches. [27, 9, 12] explore a log/append-based storage man-
ager. The authors also investigate approaches to garbage collec-
tion. The applicability of append-based database storage manage-
ment approaches for novel asymmetric storage technologies such
as Flash devices has been partially addressed in [33, 7, 32, 8, 30]. A
common feature of these approaches is that they use page-granularity,
whereas SIAS-Chains employs tuple-granularity much like the ap-
proach proposed in [9], which however invalidates tuples in-place.
Given a page granularity the invalidated page still needs to be re-
mapped in a holistic, global mapping and persisted, hence no write-
overhead reduction. Given tuple-granularity, multiple new tuple-
versions can be packed on a new page and written together at once.
In the area of operating systems log storage approaches at file sys-
tem level for hard disk drives have been proposed in [29].

Snapshot Isolation (SI) is presented in [6]. An overview of its
implementation in PostgreSQL is given in [31]. Standard SI does
not provide serializability [6]. Recently, serializable SI was pro-
posed in [10], based on read/write dependency testing in serializa-
tion graphs. The PostgreSQL implementation of serializable SI is
described in [28].

SI and MVCC enjoy broad system support. It has been im-
plemented in many commercial and open-source systems: Ora-
cle, IBM DB2, PostgreSQL, Microsoft SQL Server 2005, Ora-
cle Berkeley DB, Ingres. In some systems SI is a separate iso-
lation level, in others it is used to handle serializable isolation.



A performance comparison between different MVCC algorithms
is presented in [11, 25, 36]. Approaches focusing on in-memory
databases are studied in [23], [7]. They employ variants of version-
ing which are orthogonal to the work presented here. The Hekaton
in-memory database (IM-DBMS) describes a different approach to
serializability in [14]. Another approach to IM-DBMSs is proposed
in [35]. SAP HANA also relies on multi-versioning and aims at real
time business intelligence [15]. An alternative approach utilizing
transaction-based tuple co-location has been proposed in [18].

Similar chronological-chain version organization has been pro-
posed in the context of update intensive analytics [24]. In such sys-
tems data-item versions are archived and never deleted. Cleanup
and version garbage collection are never performed due to the an-
alytical nature of the system. SIAS-Chains provides mechanisms
to couple version visibility to (logical and physical) space man-
agement and uses SIAS-Chains transactional time, in distinction to
timestamps that correlate to logical time (dimension). Such fea-
tures were first realized by Stonebraker et al. in PostgreSQL as the
concept of TimeTravel [34]. To the best of our knowledge none of
the used concepts e.g. append-based storage and MVCC have been
explored for SI, which marks the contribution of this paper.

An overview of Flash storage properties is given in [13], de-
sign and performance tradeoffs are discussed in [5]. [26] gives
an overview of MV-DBMSs on modern storage. Append storage
(LbSM) in MV-DBMSs on Flash is discussed in [19], [17] and
[20]. [21] contains read optimizations for LbSM in multi-version
databases on Flash. [16] algorithmically integrates LbSM in tuple
granularity into the MV-DBMS. It is demonstrated in [16] (video
available online [3]).

SIAS-Chains introduces a new paradigm to version management,
improves on the version invalidation scheme and adapts the index-
ing scheme. SIAS-Chains co-locates recently inserted tuple ver-
sions, an alternative approach to tuple version placement utilizing
transaction-based tuple co-location has been proposed in [18]. [22]
demonstrates an on-line Flash simulator, delivering direct access to
Flash chips.

3. MULTI VERSION DBMS
MV-DBMSs are in line with the properties of the new storage

technologies: (i) reads are never blocked by writes - they benefit
from fast random reads and I/O parallelism of Flash; (ii) updates
can conceptually be made out-of-place - circumventing the in-place
update issue.

In MV-DBMSs tuples are associated with non-empty sets of tu-
ple versions rather than a singular tuple representation as it is in
traditional update-in-place DBMSs. Each modification of a data
item creates a new tuple version of that item and the old version is
invalidated. Whenever a transaction accesses a data item, the ap-
propriate (visible) tuple version is returned by the DBMS. Visibility
information is stored on each tuple version to facilitate finding the
appropriate tuple version of the data item (see Section 4.1.1). In SI
the visibility information is comprised of transactional timestamps:
a creation timestamp inherited from the transaction that inserted
the tuple version and an invalidation timestamp inherited from the
transaction that invalidated it.

The invalidation model influences how the underlying storage is
managed. When a tuple version is invalidated in-place, e.g. by
marking it with a timestamp, the conceptual advantage of the out-
of-place update is lost. The invalidation results in a small in-place
update of the visibility information that is stored on the tuple ver-
sion itself (a detailed example is discussed in Section 4.1) or in
at least 2x write-amplification due to copy-on-write if a LbSM is

used. Existing invalidation mechanisms rely on in-place invalida-
tion of tuple versions. To update the visibility information of a sin-
gle tuple version, the whole page (block) where the tuple version is
stored has to be updated - which is suboptimal for Flash.

4. SIAS-CHAINS
SIAS-Chains no longer follows the paradigm of addressing each

tuple version individually: tuple versions belonging to a certain
data item are addressed as a whole since all of them receive the
same unique identifier - virtual ID (VID). The successor of a tu-
ple version stores a reference to the predecessor version’s physical
location. Hence a new-to-old singly-linked version chain is con-
structed. In-place updates are thus conceptually avoided. The most
recent (newest) tuple version is always known and called the entry-
point of the data item. Detailed examples are available in Sections
4.1 and 4.1.2. In Section 4.1.2 we discuss the requirements of and
deliver our solution for a data structure that is capable of efficiently
storing necessary information for the SIAS-Chains algorithm, both
in terms of performance and space efficiency.

4.1 SIAS-Chains - Algorithm
Figure 1 depicts an example of the traditional and the SIAS-

Chains invalidation scheme. In this example data item X of re-
lation R is initially created in tuple version X0 by transaction T1.
T2 updates X0 and creates the new tuple version X1. Finally it is
updated by T3 which creates X2. The relation therefore comprises
three different tuple versions of X . In the traditional approach X0

and X1 are invalidated in place: T2 fetches the page of X0 and up-
dates it in-place by setting the invalidation timestamp accordingly;
this page will be later written back. Analogously T3 updates X1

(see on-tuple information - Section 4.1.1).
In SIAS-Chains the creation of a successor implicitly invalidates

the previous version: X receives a unique identifier, equal on all its
tuple versions (V IDx). The mapping structure (V IDmap, Section
4.1.2) always points to the entrypoint of X , which contains infor-
mation about the previous tuple version (if one exists). Each tuple
version Xv is augmented with visibility information:

4.1.1 On-Tuple Information
(i) The creation timestamp Xv.create which is denoted by the in-

serting transaction’s ID; (ii) A unique V ID which is equal among
all tuple versions of the data item it represents; (iii) A pointer ∗ptr
which stores the physical reference to an existing predecessor ver-
sion, or NULL if no such version exists; (iv) Tuple attributes such
as type, format and attribute values. There is explicitly no invalida-
tion information stored on each tuple version. The chained struc-
ture of the data item’s tuple versions code this information along
the version chain. The creation timestamp of the following version
equals the invalidation timestamp of its successor version, as it is
in the original snapshot isolation algorithm. The tuple versions of
a single data item form a chronologically sorted chain. In Figure 1
the entrypoint is X2, after T3 has committed. X2 is chained to the
predecessor tuple version X1.

4.1.2 Data Structures
SIAS employs the V IDmap data structure that stores a map-

ping of each VID to the entrypoint of the corresponding data item.
There exists exactly one V IDmap for each relation which is used
for all access paths. Each new data item receives a unique VID.
The VIDs are increasing positive numbers, which are unique for
all tuple versions of a single data item. Although a simple array is
capable of holding the mapping functionality, the efficiency of the
V IDmap is important. The requirements for the V IDmap involve



the support of fast exact match lookups, a low memory footprint,
fast updates and the support for short time latches. The latches are
necessary for updates, when a new tuple version is created and be-
comes the entrypoint of the data item’s version chain. On an insert
new values are appended. The mapping table might easily become
a performance bottleneck for large database sizes, hence it should
scale with data volume.

The search key in the V IDmap is the data item’s V ID and the
output is the corresponding TID (Tuple version ID) of the entry-
point. Pre-loading and bulk-loading can be supported, e.g. new
V IDs can be generated in a page-wise manner. Assumptions about
the page size and length of the TID are implementation specific.
The concept is applicable to different implementation choices. Our
prototype uses the following configuration:

i) TIDs are stored in pages of 8KB. ii) One TID (in Post-
greSQL) has the size of 6 Bytes and comprises the DB BlockID
(32bit) and an offset to the tuple version (16 bit). iii) The maximum
amount of TIDs that fit into a page is 1365, exclusive header. iv)
We store a maximum of 1024 TIDs per page, a 10bit offset per
TID is used. v) The record format is one TID (of the latest ver-
sion) per V ID.

4.1.3 Hashtable
On large DB sizes the mapping may not fit completely into main

memory and therefore parts of it need to be swapped to disk. The
V IDmap is augmented with page abstraction (buckets). The bucket
size equals the database page size. Since V IDs of a relation are
sequentially assigned, the buckets get filled sequentially. The posi-
tion of each TID within a bucket can exactly be calculated. The
bucket number is determined by a DIFF operation on the VID and
the capacity of the bucket: BucketNr = bV ID

1024
c.

The position within the bucket can be calculated using the mod-
ulus of 1024: TIDPOS = V ID mod 1024

There are no overflow buckets, since each V ID is in ascend-
ing order and has exactly one corresponding TID (record format).
Each update of a TID indicates a new tuple version and substitutes
the old TID′. The capacity of each bucket correlates with the hash
function. A new bucket is allocated after each 1024 consecutive
VIDs. Thus queries on VID ranges are also facilitated.

Concurrency: On insertions of new data items (assignment of
a new V ID) as well as on updates the corresponding storage slot
within a hash bucket is currently latched. Latching can be avoided
by using atomic instructions (e.g. CAS) as it is not algorithmically
needed by the proposed hash-table variant.

The access cost CR for fetching a value is: O(1) + CPU. The
update cost CW in the hash table is the calculation of the position,
setting/unsetting the latch and writing the new value: 2 ∗ CR.The
buffer has to be accessed and dirtied, hence the two-fold notation
of CR. The CPU denotes the cost to calculate the TID’s position.

4.2 Access Methods and Operations

4.2.1 Scan
On a scan in SIAS-Chains the V IDmap is accessed first to de-

termine visible tuple versions. Note: This access path is paral-
lelizable and therefore complements the parallelism of the Flash
storage.

For each V ID the visible tuple version is determined, rather than
reading the complete set of tuple versions contained in the relation
and subsequently checking each for visibility. In line 18 the visi-
bility check is executed: the requirement is that the tuple version
Xv was committed before the checking transaction tx started. Be-
ginning with the entrypoint in the chain of each data item, the algo-

Algorithm 1 SIAS-Chains Scan over V IDmap

1: procedure SCAN(Transaction tx)
2: For each VID v ∈ V IDmap {
3: TupleVersion e=V IDmap[ventrypoint] . Entrypoint
4: if isVisible(e, tx) then
5: return e;
6: else
7: while(e∗ptr ! = null){
8: p = fetch(e∗ptr) . Predecessor
9: if isVisible(p, tx) then

10: return p
11: else
12: e = p
13: end if
14: }
15: end if
16: v=v.next();} . Next Data Item
17: end procedure
18: procedure ISVISIBLE(TupleV ersion Xv , Transaction

tx){
19: return (Xv.create ≤ txid)&& (Xv.create 6∈ txconcurrent)
20: }
21: end procedure

rithm returns the first tuple version found that satisfies the visibility
criteria. The tuple version stores its creation timestamp Xv.create

which corresponds to the inserting transaction’s timestamp. If this
timestamp is smaller or equal (Xv.create ≤ txid, Algorithm 1, line
18) and the corresponding transaction was not concurrently running
(Xv.create 6∈ txconcurrent), then the tuple version was committed
before the start of the accessing transaction - hence it is “visible.
Structure txconcurrent records concurrently running transactions.

The traditional implementation, which was developed for HDDs
to enable sequential I/O, first reads the whole relation (all tuple ver-
sions) and subsequently each tuple version is checked individually.
Since SSDs enable fast random reads, the traditional scan is inef-
ficient, since each tuple version has to be checked. SIAS-Chains
scans the V IDmap first and enables more selective I/O as shown
in the evaluation (Section 5.1). Nevertheless, on the traditional scan
the same visibility criteria as in Algorithm 1 are applied. Since such
a relation scan fetches all the tuple versions, each of them has to be
checked for visibility individually it becomes a visible candidate.
The same base algorithm is executed: the entrypoint of the data
item is fetched and the visible version (if it exists) is determined
as in Algorithm 1 - this version is compared with the candidate tu-
ple version. If it matches, the check returns true. Obviously this
method is not as efficient as the scan using only the entrypoints,
since all of the potential versions of a data item need to be checked
wich incurs additional memory consumption and CPU costs.

4.2.2 Insert - Update - Delete
During the insertion of a new data item X its first tuple version

X0 is created. A new V ID is assigned: V IDmap stores the phys-
ical pointer to X0. The on-tuple information is set: X0.create is
set to the inserting transaction’s ID (timestamp); X0.∗ptr is set to
NULL and XV ID is set accordingly.

An update proceeds similarly to an insertion. On an update of
data item X a new tuple version Xn is created. All on-tuple infor-
mation is analogously set as in an insert, except for the ∗ptr vari-
able, which is set as the physical pointer to the previous tuple ver-
sion Xn−1. The V ID is inherited from the data item (equal among
all versions of X). The entry within the V IDmap is set to the phys-



Algorithm 2 SIAS-Chains Insert
1: procedure INSERT(DataItem X , Transaction tx)
2: tx.lockX = REQUESTXLOCK(X) . Lock for insert
3: X0 = new version(X)
4: X0.create = txid;Xn.pred.create = null;
5: X0.∗ptr = null; . No older version
6: X0.V ID = getNewUniqueVID(); . get new unique VID
7: V IDmap[X0.V ID] = X0.self ;
8: ON (tx.commit() or tx.rollback()): UpdateLog;
9: Release aquired Locks; WakeUp waiting transactions;

10: end procedure

ical location of the new tuple version Xn, which now becomes the
entrypoint. Only entrypoints are allowed to be updated and concur-
rent updates are avoided. The SIAS-Chains algorithm implements
the first-updater-wins rule: An update in progress creates a new en-
trypoint of the data item which is not visible for concurrently run-
ning transactions - this “locks” the data item for updates of other
transactions. Our implementation in PostgreSQL uses transaction
locks, which deliver the desired functionality (Algorithm 3 line 7).

Algorithm 3 SIAS-Chains Update
1: procedure UPDATE(TupleVersion Xu, Transaction tx)
2: TupleVersion Xe = null;
3: Xe= V IDmap[Xu.entrypoint]; . Entrypoint of X
4: if (NOT((Xe==Xu) && (isVisible(Xe, tx)))) then
5: tx.ROLLBACK( );
6: end if
7: tx.lockX = REQUESTXLOCK(X) . Lock for update
8: if (tx.lockX == GRANTED) then
9: Xn = new version(X)

10: Xn.create = txid;Xn.pred.create = Xe.create;
11: Xn.∗ptr = Xe.self ; . Pointer to old entrypoint
12: Xn.V ID = Xe.V ID;
13: V IDmap[Xn.V ID] = Xn.self ;
14: else
15: TX.WAIT(tx.lockX) if GRANTED goto[1]
16: end if
17: ON (Ti.commit() or Ti.rollback()): UpdateLog;
18: Release aquired Locks; WakeUp waiting transactions;
19: end procedure

A deletion of a data item leads to the insertion of a special tomb-
stone tuple version, necessary as long as there are running trans-
actions, capable of “viewing” older tuple versions. For example:
a transaction that started before the data item has been deleted by
another transaction still has to access the last committed state of the
data item (most recent tuple version) before the deletion.

4.3 SIAS-Chains - Indexing
When assuming a B+ tree index on a relation R, the index records

are traditionally comprised of a < key, TID > pair. Since SIAS-
Chains identifies all versions of a data item by using a V ID, the
index record is comprised of a < key, V ID > pair. Analogously
to the B+ tree, other index structures, e.g. Hash based index struc-
tures, can equally be adapted to the SIAS-Chains algorithm. For
each relation there exists exactly one V IDmap. SIAS-Chains uses
the very same V IDmap for all access paths. Figure 2 depicts the
indexing in SIAS-Chains. A B+ tree index is created on attribute
A of relation R. The V IDmap serves to determine the entrypoint
of the data item.

Example 1: The value of an indexed attribute changes: Trans-
action T1 creates the initial version X0 of data item X with the
attribute value 9. T2 updates X , changed the value to 10 and cre-
ates X1. The B+ tree stores the < key, V ID > pairs, while the
V IDmap structure points to the latest tuple version X1, resident
on P5. A reading transaction T4 executes a lookup of all values in
R that match either 9 or 10. Using the V IDmap as a mediator, the
entrypoint is fetched from page P5. Note: if a transaction is old
enough to not see X1 but young enough to see X0, the reference
pointer on X1 is used to fetch the previous version.
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Figure 2: SIAS-Chains Indexing: Index Key Update

Example 2: Update on a non-indexed attribute: This example
describes an update that does not involve a change of the index key
value. Data item X is inserted as in Example 1 with the difference
that the attribute value has not changed. For instance, there exists
an index on the product id (Figure 2, attribute A), yet just the price
is updated. The pointer in the V IDmap is updated to point to the
entrypoint X1 on page P5 while the index is left unchanged. In
the worst case the predecessor version X0 has to be fetched after
X1, if it did not match the visibility criteria. (i) Data items that are
updated without the change of the key-value do not require an up-
date on the index structure in SIAS-Chains. (ii) New (most recent)
tuple versions, that denote the entrypoint of the data item, will
eventually become the only visible version of the data item.

5. EVALUATION
We implemented the SIAS-Chains algorithm as a prototype in

PostgreSQL [2]. We compare it to the original PostgreSQL code
base, utilizing the DBT2 [1] open source implementation of the
TPC-C [4] benchmark. Each single run of the TPC-C benchmark
is configured with a different amount of warehouses (WHs) and the
results are reported in terms of transactional throughput (new order
transactions per minute - NOTPM) and in response time (seconds
- sec.). We evaluate SIAS-Chains on different storage system con-
figurations: i) a SSD RAID comprised of two SSDs, 4GB RAM
and an Intel Core2DUO; ii) a server (Sylt) with an array of six
SSDs configured in a stripe RAID, 80GB RAM and two Intel Xeon
CPUs. The utilized SSDs are of the type of enterprise class SLC
Flash (Intel X25-E 64GB SLC SSD).

5.1 I/O Pattern
To visualize the effects of SIAS-Chains on the I/O device we

recorded a blocktrace of a testrun and compare it with the I/O
blocktrace of SI.



Figure 3: Blocktrace: SIAS-Chains - SSD - 100 Warehouses -
300 sec. Almost only read access is issued.

Figure 4: Blocktrace: SI - SSD - 100 Warehouses - 300 sec.
Read and write access is mixed.

In SI write accesses are scattered along the whole relation, caus-
ing in-place updates and small random writes. Whereas in SIAS-
Chains the write access is streamlined and only appends are issued.
Each dot represents a page write of 8kb in each trace.

In SIAS-Chains each relation appends new pages containing newly
created tuple versions on a local append region (green dots in the
Figures). The scan operation over the V IDmap leads to a more
selective access which creates random read operations.

SI produces a high amount of in-place updates due to the in-place
invalidation of older tuple versions. A write operation implies that
a page is read first. Pages are scanned and updated in sequence,
hence the diagonal pattern.

The amount of write requests is significantly reduced. Table 1
shows the total amount of writes for SIAS-Chains and SI using blk-
parse on a TPC-C dataset of 100 warehouses (WH). This is caused
by the append of tuple versions to a page, that is appended and
flushed to the storage after a threshold is reached, see Section 5.2
for details. The trace diagrams (Figures 3 and 4) show that recently
appended pages are accessed more often than pages that contain
cold(er) tuple versions. Recently inserted tuple versions are likely
to be cached. Figure 3 shows that under SIAS-Chains data is se-
lectively read, forming a scattered distribution, utilizing the ample
I/O parallelism of the Flash storage. Appends to each relation form
swimlanes.

5.2 Write Reduction
In the evaluation we observe a significant write reduction by the

SIAS-Chains algorithm.
The Flash device suffers write overhead from SI caused by the

in-place invalidation: if a tuple version is invalidated, only the
timestamp (32bit) is updated, while the tuple version data stays un-
altered. Nevertheless, the whole page (8KB) has to be updated out-
of place on Flash, which eventually leads to a whole physical erase-
rewrite operation, entailing mapping overhead and unpredictable
performance. SI writes the new version on any (arbitrary) page
that contains enough free space, possibly causing another erase-
rewrite cycle. This overhead is conceptually avoided in SIAS-
Chains, which explains the significant write reduction. SIAS-Chains

Table 1: Write Amount (MB) and Reduction (%)
Time(sec.) SI SIAS-t1 SIAS-t2 Red.-t1 Red.-t2

600 4369 1511 130,5 65% 97%
900 6488 2263 193,6 65% 97%
1800 12786 4473 344,65 65% 97%

Figure 5: TPC-C benchmark on a two SSD RAID. Throughput
measured in new order transactions per minute.

appends the new version, leaving the old one unchanged and up-
dates the pointer in the in-memory V IDmap.

We measured the amount of write reduction on a larger set of
WHs. We recorded the blocktraces and configured DBT2 with a
scaling factor of hundred WHs on different runtimes in order to
inspect the amount of writes issued by SI and SIAS-Chains as well
as to measure the occupied space. Table 1 depicts our findings.

The amount of write reduction depends on the filling degree of
each appended page, determined by a threshold, directly influenc-
ing the amount of occupied space. It defines when a new page is
physically appended to stable storage. We configured SIAS-Chains
with two different thresholds. Threshold t1, the default setting of
the PostgreSQL background writer process and t2 defined by each
checkpoint interval (piggy back).

The SIAS-Chains algorithm leads to an immense write reduc-
tion. In comparison to SI, SIAS-Chains only issues 3% of the
amount of writes and therefore cuts down on 97% of the over-
all write requests, listed in Table 1 with threshold SIAS-t2. This
means that the amount of writes issued by SIAS-Chains is 33 times
less than the amount that is issued by SI. Even with threshold t1
the reduction amounts to 65%. This is extremely beneficial for the
Flash storage in terms of write stability, endurance and lifetime.

Tuples of different relations are not stored on the same page and
pages that belong to different relations are placed at different lo-
cation. This reduces contention, e.g. one relation receives more
updates/inserts than another [17].

Threshold t1 is less suitable for SIAS-Chains: sparsely filled
pages are persisted too frequently, leading to a poor overall space
consumption, wasted space and a higher amount of write requests.

Configured with t2 SIAS-Chains delivers a reduction of the over-
all space consumption by 12%. Hence pages are filled denser and
a smaller number of pages is physically appended.

The optimal threshold for write efficiency is the maximum filling
degree of a page - as reported in [17] and [21].

5.3 Performance on Flash Storage
Figure 5 depicts the throughput and response times of both ap-

proaches on a software stripe RAID comprised of two SSDs. SIAS-
Chains achives high throughput with a larger amount of WHs. Through-



Figure 6: TPC-C benchmark on six SSDs in software RAID
(stripe). Throughput in new order transactions per minute.
Throughput in Seconds.

Table 2: TPC-C on HDD - Throughput (NOTPM) and Re-
sponse Time (sec.)

Warehouses 30 40 50 60 75 100
SIAS (NOTPM) 386 512 642 763 942 727
SI (NOTPM) 325 307 279 247 243 204
SIAS (sec.) 0,031 0,05 0,2 0,3 2,1 20,35
SI (sec.) 11,7 31,4 46 65 82 123

put is increased by 30%. SI reaches peak throughput at 450 WHs
with a response time of 4.8 sec. delivering 4862 NOTPM. SIAS-
Chains reaches the peak with 530 WHs with a response time of 3.3
sec., delivering 6182 NOTPM.

5.4 Performance on HDD
With SIAS-Chains we observed clear advantages on HDD (Sea-

gate ST3320613AS S-ATA HDD with 7200rpm).
The caching effect of SIAS-Chains is implicitly confirmed by

our performance tests on HDD. SIAS-Chains scales on HDD as
long as most reads are cached and improves on SI due to write re-
duction and append operations. Since less data is written in SIAS-
Chains, the HDD has to move less mechanical components for ran-
dom writes. It is therefore not surprising that SIAS-Chains proves
to be beneficial for the HDD as long as the sum of reads and writes
(appends) in SIAS-Chains stays below the cost of those in SI (ran-
dom access costs are symmetric). On HDD SIAS-Chains improves
on SI in terms of transactional throughput and especially on re-
sponse time (better caching). SI exhibits high response times. The
system stays responsive below 30 WHs. SIAS-Chains provides a
responsive system with up to 75 WHs.

6. DISCUSSION
Recovery. SIAS-Chains does not affect the MV-DBMS’s inher-

ent recovery mechanisms (write-ahead logging and ARIES-style
recovery). The threshold delays the time until a single page is al-
lowed to be appended and written out to the storage media, yet
WAL is not affected. Currently the SIAS-Chains data structures are
only persisted during the shutdown of the DBMS, since all infor-
mation that is required for a reconstruction is stored on each tuple
version (Section 4.1.1).

Space Reclamation. The basic concept in MV-DBMSs is to re-
claim space on the append storage using a garbage collection (GC)
mechanism which: (i) finds a victim page that is chosen to be
garbage collected, (ii) re-inserts live (visible) tuple versions and
(iii) discards dead (invisible) tuple versions of that page.

GC mechanisms have to erase pages on the SSD, yet this is a de-
terministic process, triggered by the MV-DBMS and does not rely

on the device’s inherent mechanisms. Integrating the append stor-
age GC into the MV-DBMS avoids unpredictable performance out-
liers of the Flash storage media, caused by background processes
on the device. This transfers yet more control over the Flash storage
into the MV-DBMS, as in the approach reported in [22].

Flash Endurance. Since Flash storage is prone to wear and has
a limited lifetime, it is crucial to provide appropriate I/O patterns
in order to improve the endurance. Growing Flash capacities for
SSDs entail the trend to larger erase units, since larger sizes al-
low the use of smaller mapping tables on the SSD’s controller.
Since wear on the device is measured using the average amount
of erases, avoidance of small updates, such as timestamp related
meta-information becomes more important. The I/O pattern, as cre-
ated by SIAS-Chains, suggests an increased endurance of the Flash
memories. SIAS-Chains significantly reduces the write amount and
the required space on the device. In-place updates are avoided, new
pages are written (appended) in monotonously increasing order.

7. CONCLUSION
The design, architecture, algorithms and optimizations in MV-

DBMSs that are based on characteristics of legacy storage media
have to be reconsidered. The full potential of asymmetric storage
technologies such as Flash can only be leveraged by MV-DBMSs
that are aware of their characteristics and exploit their properties.

With SIAS-Chains we propose a Flash-aware MV-DBMS de-
sign that contributes: (a) a new paradigm to version management;
(b) a new version invalidation scheme; (c) a multi-versioned index-
ing scheme; (d) the combination of multi-version concurrency con-
trol with append storage in tuple granularity; (e) extending it with
multi-version indexing, simplified buffer management and read op-
timizations that leverage the properties of the aforementioned com-
bination. SIAS-Chains algorithmically avoids small in-place up-
dates, caused by in-place invalidation and converts them into ap-
pends. Every modification operation is executed as an append and
recently inserted tuple versions are co-located.

We implemented SIAS-Chains in the PostgreSQL and evaluated
it under TPC-C using DBT2 on different Flash storage media as
well as on traditional HDD storage. We observe: (i) higher trans-
actional throughput; (ii) significantly lower response times (orders
of magnitude); (iii) significant write reduction; (iv) reduced space
consumption; (v) higher amount of tolerable load.

The I/O pattern suggests an increased endurance of the Flash
memories. We also report benefits on HDD, especially in terms of
lower latency and higher transactional throughput.
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