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ABSTRACT

Predicting the performance of join algorithms on modern
hardware is challenging. In this work, we focus on main-

memory no-partitioning and partitioning hash join algorithms

executing on multi-core platforms. We discuss the main pa-
rameters impacting performance, and present an effective
performance model. This model can be used to select the
most appropriate algorithm for different input data-sets for
current and future hardware configurations. We find that for
modern systems an optimized no-partition hash join often
outperforms an optimized radix partitioning hash join.

1. INTRODUCTION

In the past decades, as new computer architectures
emerged, the competition between different main-memory
hash join algorithms has become more interesting. Signifi-
cant research [1, 16, 12, 2, 3, 10, 9] has gone into develop-
ing algorithms that efficiently utilize the underlying hard-
ware and this has provided a guidance to choosing better
performing algorithms on modern hardware. However, the
hardware develops so fast that the best algorithm today is
probably not the best in the future. One obvious change
that may lead to this is increased memory bandwidth.

In the past few years, development of hash join algorithms
has been focused on partitioning the data to the size that
fits within the last-level cache. However in modern systems,
contrary to prior findings, we find that partitioning hash join
is not always better than no-partitioning hash join. In this
paper, we analyze the performance of hash join algorithms
by a bandwidth-driven model and provide a guideline for
choosing the right algorithm according to the dataset and
architecture characteristics.

The contributions of the paper are as follows:

e We analyze the impact factors for the hash join algo-
rithms. We discuss the importance of granularity.

e We build a performance model that considers both
computation and memory accesses.
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e Based on the proposed model, we study a no-
partitioning hash join and a radix partitioning hash
join.

e We predict the performance changes along with the
changes of the data set and the hardware.

e We validate the model with hardware-based experi-
ments on two processor architectures.

2. BACKGROUND

See [6] for early work on in-memory databases and hash-
join.

2.1 Hash Join Algorithms

Classical hash join The classical hash join contains a
build phase and a probe phase. During the build phase,
tuples in the smaller relation R are scanned to build a hash
table, and assigned to the corresponding hash table bucket.
After the hash table is built, the probe phase scans the other
relation S. For each tuple in S, it probes the hash table and
validates the matches.

No-partitioning hash join No-partitioning hash join [4]
is a parallel version of classical hash join. Each relation is
equally divided into shares. In the build phase, each share in
the smaller relation R is scanned by a thread. Together the
threads build a shared hash table. Similarly, in the probe
phase, each thread gets a piece of data from relation S and
does the probe in parallel.

Partitioning hash join To limit cache misses, [16] intro-
duces the partitioning hash join. Before building the hash
table, both relations are divided into small partitions. Hash
tables are built separately for each partition of relation R.
After the hash table is built for one partition, the corre-
sponding partition in relation S is scanned to do the probe.
If the hash table for each partition is small enough to fit in
the cache, this reduces cache misses, at the cost of parti-
tioning overhead. The partitioning hash join can be further
optimized as the radix partitioning hash join [12] which uses
multiple partitioning passes to reduce the translation looka-
side buffer (TLB) misses.

2.2 Related Work

The discussion between no-partitioning hash join and par-
titioning hash join never stops since the underlying hard-
ware develops at a fast pace. Much research effort has been
made on tuning the algorithms to leverage the underlying
hardware platforms. Prior work [16, 9, 1, 5] shows how
to use cache in a more efficient way for partitioning hash



join. Shatdal et al. [16] point out that if the hash table for
each partition is small enough to store in the last level cache
(LLC), the number of cache misses is reduced. Chen et al. [5]
use prefetch to reduce the cache misses. Based on the cache
optimization, Kim et al. [9] and Manegold et al. [12] further
focus on the TLB problem. They show that using multiple
passes partitioning can reduce the TLB misses caused by
accessing too many pages in a one pass. Lang et al. [10]
propose a NUMA-aware hash join algorithm based on their
finding on NUMA effect that unreasonably distributed data
in multiple NUMA nodes decreases performance.

Earlier research [2, 3, 4, 15] also makes comparisons be-
tween no-partition hash join and partitioning hash join.
Blanas et al. [4] evaluate both classes of algorithms on multi-
core platforms. They claim that no-partitioning hash join
is competitive because partitioning hash join introduces ex-
tra cost such as computation for partitioning and synchro-
nization which is higher than the penalty of cache misses
in no-partitioning hash join. In [2] and [3], partitioning
hash join, categorized as hardware-conscious algorithm, is
well configured to compare with no-partitioning hash join
which is hardware-oblivious. The authors argue that the
partition hash join runs fast in most of the cases, and the
hardware-oblivious hash join only performs well when the
ratio between the size of two relations is significantly differ-
ent. However, it is interesting to compare a well-configured
partitioning hash join with a optimized no-partitioning hash
join such as using prefetch. [15] compares 13 different join
algorithms including hash join and sort merge join. Even
though partitioning hash join performs better than no par-
titioning hash join, they point out that there is not a 100%
best algorithm.

Another way to compare the algorithms is to build a per-
formance model and use it for prediction. In [14, 13, 8, 7],
performance models are set up describing the main cost of
different hash join algorithms. These models consider both
processing and disk I/O cost. It is increasingly feasible to
store the entire database [6] in memory. For this organi-
zation, I/O cost is not the dominating part, but memory
accesses are. Prior work[11] presents a cost model based on
the cache lines transferred, but this work only covers the no-
partitioning hash join algorithms. In this paper, we focus
on in-memory processing and build a model to estimate the
performance of in-memory hash join algorithms with special
attention to granularity effects.

3. PERFORMANCE MODEL

In this section, we present a performance model to de-
scribe the cost of hash join algorithms. We first analyze
the factors that should be considered to estimate the per-
formance and how they influence the algorithms. Based
on these impact factors, we propose a general performance
model, followed by the study of two specific hash join al-
gorithms: the parallel no-partitioning hash join and radix
partitioning hash join.

3.1 Impact factors

Previous work has shown that there are many factors af-
fecting the performance of hash join algorithms [3, 10, 15].
We divide them into two categories, application character-
istics and hardware features. Some algorithms’ parameters
can be tuned according to these factors to gain better per-
formance.

3.1.1 Application Characteristics

Relation size Relation size depends on the tuple size
and the number of tuples. However, we can minimize the
size with some pre-processing operations such as filtering
and abstracting the payload of each tuple to a fixed size
pointer that points to the original tuple. In our performance
model, we assume that the relations have been pre-processed
by filtering and each tuple contains a key and a pointer-
style payload. When we compare hash-join algorithms we
do so for same-size inputs, but we need to be aware that
algorithms may scale differently with respect of each of the
input relations.

Distribution of dataset. Within a dataset the distri-
bution of values within a certain column can be even or
skewed. Building a hash table for skewed data causes more
hash collisions, while probing a hash table for skewed data
increases cache hits. In this paper, although we know the
data skew is important and interesting, we assume that the
dataset is evenly distributed, since it is easier to explain the
principle of our performance model. In the future, we plan
to work out a refinement of the model to describe the cost
of hash joins for skewed data.

3.1.2 Hardware Features

Granularity. Typical modern server processors have
cache line sizes of 64 or 128 bytes, and (cached) accesses to
main memory occur at this level of granularity. Randomly
accessing elements smaller than a cache line, or quantities
that cross a cache line, introduces granularity effect, incur-
ring a granularity overhead, also referred to as read- or write-
amplification.

Cache size. Probing hash tables requires randomly ac-
cessing the hash table. If the cache is not large enough to
contain the whole hash table, cache misses occur, decreasing
the performance of the hash join. To reduce the number of
cache misses, we can partition the data before building the
hash table, in order to fit the hash table of each partition in
the cache.

TLB entries and virtual page size. The TLB caches
virtual memory page address to physical page address trans-
lations. If the translation table does not cache the requested
translation entry, a TLB miss occurs. The requested data
cannot be loaded until the translation entry is updated.
More misses are likely if more pages are accessed. Main
memory hash join algorithms, especially the partitioning
hash join, are sensitive to the number of TLB entries [12].
Using a large page size can reduce the TLB entries re-
quired [2, 3], increasing the TLB hit rate.

Memory bandwidth. Memory bandwidth determines
the rate at which data can be transferred between main
memory and the CPU. For memory-bound algorithms, the
overhead of transferring data dominates.

CPU processing rate. CPU processing rate indicates
how fast the processors process data. For hash join on mod-
ern hardware we believe optimized algorithms are usually
memory bandwidth bound. However, memory bandwidth
may increase in the near future, which means algorithms
may become compute bound, and we need to explore trade-
offs between computation and memory accesses.

Other features. There are many other potential im-
pact factors such as NUMA topologies, simultaneous mul-
tithreading (SMT), synchronization, and load balancing.
These factors have been proved to be influential in [3, 10].



In this paper, to simplify the model, we limit the algorithms
to running on a single-node machine, and assume that the
SMT, synchronization and load balancing factors contribute
only a few percent of the overall cost. While we do not in-
clude these factors in the proposed performance model, we
show that despite this the model can provide a reliable pre-
diction of the performance.

3.2 Model

3.2.1 Platform Assumptions

Our model assumes a basic multi-core machine with a
memory size that is large enough to store all the data, and
we assume no intermediate results need to be written back
to the disk. As we want to study the comparison between
no-partitioning hash join and partitioning hash join, to make
them competitive, we assume that neither of the two rela-
tions can fit in the last level cache (LLC). Each data trans-
fer between the LLC and main memory should be an inte-
ger multiple of smallest main memory transfer size, namely
granularity, normally the same as the cache line size. Al-
though NUMA architectures play an important role in the
hash join performance [10], we focus on a single NUMA node
system for now, and defer the analysis of NUMA effects and
multi-node systems to future work.

3.2.2  The formulas and their explanation

Table 1 shows the notation of the parameters used in our
performance model. Please note that to predict relative per-
formance of algorithms, our model does not use any empiri-
cally fitted parameters. To describe different hash join algo-
rithms and their variants, we adopt a uniform description.
The total running time 7" of a hash join algorithm consists
of the running time of each phase:

T:iTi (1)

For the running time of each phase T;, we consider both the
cost of memory accesses and that of computation. The cost
of each phase should be the sum of the time the system was
computing and the time it was accessing memory, minus the
time it was doing both.

Ti = Tcom + Tmem — dLoverlap (2)

min{Tcom Tmem } —Toveriap
maz{Teom ,Tmem }

Ti = (1 + ﬁ)max {Tco'rru Tmem} (3)

For a well-optimized algorithm we assume maximum over-
lap, i.e., 8 = 0. So, formula 2 reduces to:

Suppose = , then

Ti = max {Tcom7 Tmem} (4)
The computation cost can be represented as:
D
Tcom = = C 5
=+ (5)

where D denotes the processing data amount, and P indi-
cates the base processing rate. We use C to represent the
other costs such as cache miss penalty, TLB miss penalty,
synchronization cost, etc. The memory accesses in each
phase consist of different passes of read and write. For a
multi-pass memory access we have:

Table 1: Model Parameters

Parameters Description
T total running time
T; running time of each phase
n total number of phases
Teom computation time
Tomem memory accesses time
Tovertap the overlap between T¢om and Thyem
C penalty cost during computing
m total passes of memory access in each phase
D required data amount, equal to relation size
D, data amount for read
D, data amount for write
P processing rate
B memory bandwidth
B, read bandwidth
By write bandwidth
w tuple size
G granularity(size of cache line)
«@ the number of cache lines the data span across
R, S relation R, S
|S], |R| tuple number of relation R, S
Tmem :Zf(DTaBTaD’lU?Bw) (6)

The function f(D;, By, Dw, Bw) indicates the data transfer
time of each data pass. (Dr/D,) is the read/write data
amount and (B,/B.,) the read/write bandwidth. We con-
sider both a memory channel shared between read and write
and a (buffered) architecture with separate read and write
channels. Thus,

Dyt Dy Shared channel

f(Dr, Br, Dw, Bu) = { mazx { g;g g—:} Non-shared channel

When calculating D, and D,, access granularity must be
taken into account. This means that instead of calculating
these as the size of the elements transferred times the num-
ber of elements transferred, D, or D, become oG times
the number of elements where o accounts for the number of
granules transferred per element because of size and align-
ment, and G is the granule size.

3.3 Study of Hash Join Algorithms

We analyze two prevalent parallel hash join algorithms
mentioned in [2, 4], a parallel no-partitioning hash join and a
histogram-based 2-pass partitioning hash join. For this case
study, we assume, that relation R is not larger than relation
S, or |R| < |S|. The hash table is built based on relation R.
In section 3.3.1 and 3.3.2, we analyze both algorithms with
a shared memory channel machine, and extend this to the
non-shared channel machine in section 3.3.3.

3.3.1 No Partitioning Hash Join

The parallel no partitioning hash consists of two phases:
the build phase and the probe phase.

Tnp = Tyuitd + Tprove

During the build phase, the CPUs scan all the tuples in
relation R, and a hash function is applied to each tuple’s
key to build the hash table. After that, the hash table is
written back to main memory. Thus, the memory accesses in
the build phase contain a sequential read of relation R, and
for each tuple in R, it reads and writes the corresponding
hash table buckets with granularity effect. As we can reduce



hash collision by techniques such as using larger hash tables
or a better hash function, we assume that there are no or
few hash collisions. So, for the build phase or the probe
phase, only one hash table bucket is accessed for each tuple.
Hence the actual data amount for read is:

WIR| + oG|R|
The actual data amount for write is:
aG|R|
The total data transfer time for the build phase is:

W|R| + aG|R| + aG|R| (W + 2aG)|R|
Tmeml = = (7)
B B
The cost of computation contains the pure processing part
and the other cost C1. We use P; to indicate the processing
rate of each phase. According to previous research based
on the modern multi-cores architecture [2], the cache miss
penalty caused by randomly accessing the hash table takes
up most part of C7, making the computation dominating.
Therefore,

WI|R
Tcoml - }D| | + Cl (8)
1

In the probe phase, tuples in relation S are read, and after
a same hash function being run on each tuple’s key, the
corresponding hash table buckets are read from the hash
table for probing. Therefore, only a read is needed in this
phase and the memory access cost is:

W|S| + aG|S]|
B

Similar with 8, the cache miss penalty is significant in the
probe phase. The computation cost in this phase is:

WiS|
P,

The total cost for parallel no partitioning hash join is:

TmemZ =

Teom2 = + C2

Tnp = max { (W + ?G)|R|, W;__l)R| —|—C1}
gl
9
+max (W +aG)|S| WIS| + Cs Y
B TPy

3.3.2  Radix Partitioning Hash Join

The radix partitioning hash join we mention in this sec-
tion consists of three phases, the first partitioning phase,
the second partitioning phase, and the build-probe phase.
To reduce the potential contention between different threads
in the first partitioning phase, an extra histogram phase is
added to build a global histogram for each thread. The sec-
ond partitioning phase is similar with the first pass. One
difference is that in the second partitioning phase, the his-
togram is built locally for each thread. The build-probe
phase can be divided into a couple of sub-phases since it re-
peats the build phase and the probe phase for each partition.
However, we can combine the build phase for all partitions
into a build phase during the cost calculation, as well as the
probe phase. As not all the partitions need to do the build-
probe phase, the data needed to process and access in this
phase is some percentage of the relation size. To simplify
the calculation in this case study, we assume that it needs to
operate the build-probe phase on all the partitions, namely,

the whole relations. The total cost of radix partitioning hash
join is:

TRP = Thistog'ram + Tpartitionl + TpartitionQ + Tbuild + Tp’r‘obe

Following reasoning similar to the no-partition case the
total cost of radix partitioning hash join is:

W(R[+|S) W(R[+]S])
B s 2} + Cy
SW(R[+S)) W(R|+|S])
B ’ P, +Ca
AW (R +|S]) W(R|+|S])
+ma;r{ B s P,

Trp = max {

+max{

+ 03} (10)

+ mazx MMJ’_C
B ' P *
|S

+ mazx L‘M+C
B ' Ps >

We briefly describe the phases to explain each of the com-
ponents of this equation.

The histogram phase (phase 1) is done separately on both
relations. For each relation, the processors read all the
tuples and builds the histogram. The histogram is small
enough to store in the cache and there is no need to write
back to the memory. So, only a sequential read is done on
both tables. While included in the formula we expect the
compute cost to be dominated by the transfer cost.

During the first partitioning phase (phase 2), all tuples in
both relations are scanned and assigned to the correspond-
ing partition, and then the partitions are written back to the
memory. Even though the access to each partition is ran-
dom, the cache is large enough to maintain a small bucket
for each partition. When the small bucket is full, it is written
back to the main memory and the another empty bucket will
be read for other tuples. So, the granularity-size data block
is fully used in this phase. Assuming the size of the parti-
tioned relation is equal to the original relation size, there is
a full read and a full write for both relations. Also, the data
block should be read before it is written back. If the number
of partitions is too large, it may cause many TLB misses,
the overhead of which can cause the computation cost dom-
inating. However, multi-passes approaches can be used to
limit the fanout of each pass partitioning, minimizing the
number of TLB misses. Therefore, in the later parts of this
paper, we assume that the memory access costs dominate
the total running time.

The second pass partitioning phase (phase 3) is similar
with the the first pass partitioning, but here we include the
second histogram build with the partitioning.

For the build-probe phase (phase 4 & 5), we assume that
in this case the hash table for each partition is small enough
to fit in the cache and there are few cache misses when ac-
cessing the hash table. Otherwise, the cache misses penalty
may take up a significant part of the cost, turning it back
the the case of no partitioning hash join for each partition.
The build sub-phase (phase 4) and probe sub-phase (phase
5) are modeled separately.

3.3.3 Non-shared Channels

If the two algorithms analyzed in section 3.3.1 and 3.3.2
run on a non-shared memory channel machine, the overlap



between read and write should be considered. In the no-
partitioning hash join, the write only happens during the
build phase. The cost for transferring data depends on the
dominating part between reading both the tuples and the
hash table and writing the hash table. So, formula 7 is
changed to:

{W|R| + aGR aG\R\}
Tmeml = max

B, " By
Correspondingly, the overall cost of no-partitioning hash join
is modified to:

— max{mm +aG|R| aG|R| W|R] +cl}

B, " B, B P
(W + aG)|S| WIS| (1)
+max{ Boi "B +Cz}

The write happens during all partitioning phases in the radix
partitioning hash join. As we analyze above, the read and
write amount for the first partitioning phase are 2W(|R| +
|S]) and W (|R|+|S|), respectively, the memory access time
for either pass should change to:

2W(|R] +15]) W(\RHISI)}
B, " Bu

Tmem2 = max {

Similarly, cost for the second partitioning phase is:

3W(IR| +15]) W(\RHISI)}
B " Bu

Tmem3 = max {
Consequently, the overall performance for radix partitioning
hash join is:

T =z { WUELEIS) WORE1S) )
B. Py

+ max B, , B. , j2)

SW(R|+[S) W(R|+|S)) W(R|+|S])
+max{ B, R B., R P

WI|R| W|R
+max{#,%+04}

wW|S| W|S
—&—max{iB'T |’7P|5 | +C5}

(12)

3.4 Model Analysis

In this section, we validate the proposed model and show
how to make a prediction with the model. We assume we can
use techniques such as prefetch and multi-pass partitioning,
to reduce the cost of computation, and both algorithms are
limited by the memory bandwidth. We use a 16B tuple size
W and 64B cache line size G as an example. We assume
the hash table, the tuples and the meta data are within the
same cache line. Each access to a 16B tuple in the hash
table causes transfer of a 64B block, or « = 1. For a non-
shared memory channel machine, according to formula 9 the
running time of the no-partitioning hash join is:

(W +20G)|R| (W +aG)|S| _ 144|R| +80[S|
B B - B

In a two-pass partitioning radix hash join, assume a good
partition number is chosen to reduce the cache misses and
TLB misses, so that the algorithm is memory bandwidth

Tnp =

{2W(|R|+|SI) W(R|+15]) W(IRI+ISI)+02}

+C3}

limited. According to formula 10, the running time of the
radix partitioning hash join is:

_ W(R[+15]) | 3W(RI+1S]) | AW(R[+]|S] 5

Trp B 5
L WIRL | WIS| _ 144(R] £ 15))
B B B

We can conclude that for this case the no-partition hash
join will always perform better.

There are some differences when running the algorithms in
a non-shared channel machine since the read and write have
overlap. We select a cache line size of 128 Bytes. Suppose
the read bandwidth is twice as large as the write bandwidth.
That means in one phase if the read data amount is not twice
larger than the write data amount, that phase is dominated
by the write cost. According to formula 11, the cost of the
no-partitioning hash join in a non-shared channel machine
is:

oGIR| | (W +aG)IS| _ 128/R| 1448
By B, B B, B,

Similarly, based on formula 12, the running time of the radix
partitioning hash join in a non-shared channel machine is:

Tnp =

WI(|R S WI(|R S SW(|R S
Tp = WORLHISD | WORI 18D | W (R+15)
WIRl , WIS| _ 80(RI+1S]) , 16(R| +|S)

t 5 "B T B, + Buw

It is also be useful to look at granularity effects . Assuming
that the tuple does not exceed the size of a cache line (i.e.,
o = 1), and setting X = 15l

= IRl
Twp = %((W+2G)+ (W +G)X)

R
Trp = %(W(l—l—X) +W(3—|—3X)

+W(4+4X) + W(1 + X))

SOlVing Tnp < Tgrp yields

G X+2
W > —(—— 13
> 51 (13)

especially when X = I‘Sl‘ is large enough,

G
Wbreak,even >~ = (14)

8
Thus, unlike the change in %, change in the tuple size

plays a significant role in which algorithm performs best.
For G=64B, the break-even tuple size is about 8B.

4. EXPERIMENT SETUP
4.1 Platform

We validate the proposed model on two different multi-
core machines. The HP Proliant DL-360P has 10 cores per
node, with SMT2 configuration. Different with HP Pro-
liant DL-360P, the IBM POWERS S824L has fewer cores but
more threads. Each of 4 NUMA nodes in the IBM POWERS
S824L has 5 cores with up to SMTS setting per cores. Cache
and TLB configurations are summarized in table 2.

Both platforms have multiple NUMA nodes. As we want
to eliminate the NUMA effect, we only use one node in both



Table 2: Hardware Platforms Feature

HP Proliant IBM POWERS
DL-360p Gen8 S824L
CPU Intel Xeon IBM POWERSE
E5-2670 v2 2.5GHz 3.7GHz
Cores 10/20 5/20
Threads 20/40 40/160
Cache L1 32 KiB 64 KiB
L2 256 KiB 512 KiB
L3 25 MiB 8 MiB
TLB L1 64 48(96)
L2 512 256
L3 N/A 2048
Page size 4 KiB 4 KiB
Memory 192 GB 256 GB
Read: 76.8/307.2 GB/s
Mem. BW 42/84 GB/s Write: 38.4/153.6 GB/s
Cacheline 64B 128B

platforms. The memory bandwidth in HP Proliant DL-360P
is around 42 GB/s within each NUMA node. It is shared
between the read and write. The IBM POWERS S824L has
seperate read channels and write channels with each node
supporting 76.8 GB/s read and 38.4 GB/s write bandwidth.

4.2 Workload

For evaluating both algorithms analyzed in section 3.3, we
use the workload from [4] and extend it to support various
tuple sizes from 4B to 128B. We assume the workload is
in a column-oriented mode with each tuple in a form of
< key,value >. Except for the 4B tuple case, which has a
4B key and no value, we assume an 8B key. We assume the
key in each relation is unique and uniformly distributed.

S. EXPERIMENTAL RESULTS

In this section, the proposed model is evaluated. We first
analyze both algorithms by tuning prefetch distance, radix
bits, and SMT configuration. After that, we demonstrate
the granularity effect by changing the tuple size. Finally, we
vary the relation size ratio and show that the relation size
ratio does not change the winner in the competition between
no-partitioning hash join and radix partitioning hash join.

5.1 Impact of Software Prefetch

One of the dominating costs in a no-partitioning hash join
is the result of cache misses. Since the latency is high for
getting the data from main memory instead of from cache,
cache misses cause stalls in the processor. The processor
cannot continue to work until the data is returned. Using
software prefetch is a way to reduce the cache miss penalty.

Figure 1 shows the impact of using prefetch in the no-
partitioning hash join. A prefetch distance ¢ means that
when processing the current tuple, the processors do the
prefetch of the hash bucket for the next ith tuple. We can
see from the figure that, the performance improves more
than 25% in the Intel machine and 35% in the POWERS
machine, respectively. For the Intel machine, the perfor-
mance remains stable when the prefetch distance reaches
4, and after 10, the performance nearly doesn’t increase any
more. This is because it reaches the memory bandwidth lim-
itation. The prefetch effect is more obvious in the POWER
machine. The running time drops sharply from no-prefetch
to only adopting a prefetch distance of 1. In the rest of the
paper, the no-partitioning hash join uses prefetch distance

of 10 in the Intel machine and 6 in the POWER machine
unless otherwise specified.

The performance improvement is the result of latency hid-
ing. When randomly accessing the hash table either dur-
ing the build phase or the probe phase, as the cache is not
large enough to hold the whole hash table, a lot of cache
misses occur. Doing prefetch can access the data before it is
needed, reducing the wait cycles for the data response. If the
prefetch distance is large enough, it can reduce most of the
waiting time. A drawback of utilizing prefetch is the increase
of the number of instructions. However, this penalty is far
less than the performance increase introduced by prefetch.
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Figure 1: Running time for no-partitioning hash join
with different prefetch distance (Intel, 10 cores, 20
threads, POWERS, 5 cores, 40 threads)

5.2 Number of Partitions and Partitioning
Passes

Radix partitioning hash join is a hardware-sensitive algo-
rithm. The radix bit, indicating the number of partitions
(2radi@ bit) 'ig an important tuning parameter. It should be
well configured to gain good performance. On the one hand,
If the partition number is too small, the size of each parti-
tion may not fit in the cache, leading to cache misses. On
the other hand, if the number of partition is too large, each
partitioning pass may cause a lot of TLB misses.

Figure 2 shows how the performance changed running
against the Intel and the POWERS machine by varying the
radix bit. We can see that, in both figures, the partition-
ing time increases when the radix bit goes up, along with
the build-probe time decreasing. The best trade off radix
bit configuration for the Intel machine is 10, after which the
partitioning time jump sharply due to the TLB miss penalty.
The POWERS machine is more robust with respect to this
parameter. A radix bit of 14 is the best configuration, and
when the radix bit is larger than 19, the partitioning time
increases significantly. The build-probe time, on the other
hand, declines rapidly at the beginning when radix bit in-
creases beyond 6. The reduction of cache misses contributes
to this performance enhancement. However, the build-probe
cost does not keep shrinking when the partition number is
too large (radix bit is 20 in both machines). This is be-
cause the computation for each partition takes up a larger
percentage of the overhead and starts to dominate.

5.3 SMT effect

Figure 3 demonstrates the curve of the SMT effect in the
POWERS8 machine. We run the no-partitioning hash join
both with and without prefetch, and radix partitioning hash
join. We can see that the no-partitioning hash join benefits
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Figure 2: Running time for partitioning hash join
with different radix bits (Intel, 10 cores, 10 threads,
POWER, 5 cores, 15 threads). The cost for building
histogram is included in the first partitioning phase.

from the SMT, especially the case without prefetch. This
logical because both threading and prefetching hide memory
latency. However, it keeps stable when the threads number
is more than 20 for the no-partitioning hash join without
prefetch and more than 10 for that with prefetch. Con-
versely, the radix partitioning hash join is more oblivious to
the SMT configuration. The running time does not change
a lot when the SMT is in different configurations. It even
increases slightly when the thread number reaches 20 which
means SMT4 configuration. For the rest of this paper, we
use SMTS8 for the no-partitioning hash join and SMT3 for
the radix partitioning hash join in the POWERS machine
as they are the best selection based on this experiment.
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Figure 3: Running time with different numbers of
threads (POWER, 5 cores)

5.4 Granularity

Because we cannot change the cache line size we vary the
size of the tuples. Figure 4 shows how the running time
changes as a function of the tuple size changing from 4B to
128B for measured data and our model on the Intel machine.
For larger tuple sizes the no-partitioning hash-join performs
better. This is expected because for larger sizes there is
increased bandwidth pressure and the amplification benefit
of the partitioned hash join is reduced. The measured and
predicted curves have similar shape. The measured break-
even point is around 8B, close to 9B provided by the model.

Figure 5 shows the performance of both hash join algo-
rithms running on the POWERS machine. The running
time of radix partitioning hash join increases smoothly in a

same pace with the tuple size. The running time of the no-
partitioning hash join, showing a different curve, climbing
stably at the beginning when the tuple size is small. From a
32B tuple size to 64B size, there is a jump, almost doubling
the running time, which is as shown in the 32B size in the
Intel machine test. This is because the tuple and the meta
data in a same hash table bucket are split over two cache
lines. Consequently, each access to the hash table actually
transfers two cache lines instead of one. Measured radix par-
titioning hash join win when the tuple size is 16B or smaller,
while the no-partitioning hash join win when the tuple size
is 32B or larger. The modeled break even is around 21B
which matches the prediction analyzed in section 3.4
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Figure 4: Running time with different tuple size (In-
tel, 10 cores, radix (red) and no-partition (blue))
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Figure 5: Running time with different tuple size
(POWER, 5 cores, radix (red) and no-partition
(blue))

5.5 Relation Size Ratio

In this section, we explore how the relation size ratio im-
pacts the performance. We run both algorithms in both
platforms with various |R| from 16 * 2%° to 256 * 22 and
keep the size of S at 256 x 22°. Figure 6 and figure 7 sum-
marize the prediction trend of both algorithms’ performance
with different R size according to the proposed model. We
can see from figure 6, consistent with the model, that when
the tuple size is 16B, the no-partitioning hash join is always
better than the radix partitioning hash join. Conversely,
when the tuple size is 8B, the radix partitioning hash join
outperforms the no-partitioning hash join. In figure 7, the
radix partitioning hash join runs faster than no-partitioning
hash join both when the tuple size is in 8B and in 16B.

Figure 6 and figure 7 illustrate the experiment results
of the relation size ratio effect. Both figures have similar
shapes with the proposed model prediction. The curve of
no-partitioning hash join in 8B tuple size is close to that



in 16B tuple size due to the granularity effect, while the
running time doubles for the radix partitioning hash join
when the tuple size changes from 8B to 16B. The radix par-
titioning hash join runs slower than the estimation by the
model, likely because the overlap between computation and
memory accesses cannot be ignored. So all the curves for
radix partitioning hash join in the model should be shifted
up. Consequentially, as shown in figure 6 and figure 7, the
no-partitioning hash join can win in some cases when the
difference between the size of both relations are large.
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Figure 6: Running time with different relation size
ratio (Intel, 10 cores)
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6. CONCLUSIONS AND FUTURE WORK

In this paper, we analyze the performance of in-memory
hash join algorithms on multi-core platforms. We discuss
the factors that impact the performance and find that the
granularity is one of the main impact factors. Based on this
finding, we propose a performance model considering both
computation and memory accesses. According to the model,
no-partitioning hash join should be more competitive than
the partitioning hash join when the tuple size is large and the
granularity is small. The results show that our model can
accurate predict the winner between no-partitioning hash
join and partitioning hash join. In the future, we expect
to extend the proposed model to account for NUMA effects
and skewed data distributions.
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