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ABSTRACT
Storage Class Memory (SCM) has the potential to drastically change
the database system landscape – much like high core count CPUs
and large DRAM capacities spurred a shift to in-memory databases a
decade ago. One of the possibilities provided by SCM is to signif-
icantly improve restart performance. SCM-enabled databases can
evince a single-level main-memory architecture that stores, accesses,
and modifies data directly in SCM, removing the traditional recovery
bottleneck for main-memory databases: reloading data from durable
media to main memory. Almost instantaneous recovery is possible,
but at the cost of reduced throughput as latency sensitive data struc-
tures such as indexes need to be kept on SCM whose read and write
latencies are projected to be noticeably slower than those of DRAM.
We can regain this throughput by fully storing secondary data struc-
tures in DRAM and rebuilding them after restart, concurrently with
processing incoming requests. While these data structures are be-
ing rebuilt, request throughput will be reduced not only because
of the rebuilding overhead but, more significantly, because their
(temporary) absence will result in sub-optimal access plans. Hence,
rebuilding DRAM-based data structures becomes the new bottleneck
for SCM-enabled databases recovery. In this paper, we address this
bottleneck and describe Adaptive Recovery, a novel recovery tech-
nique that significantly reduces the impact on request throughput
during the recovery period over naı̈ve approaches such as rebuilding
data structures when first referenced.

1. INTRODUCTION
Availability guarantees form an important part of many service

level agreements (SLAs) for production database systems [7]. Database
recovery time has a significant and direct impact on database avail-
ability as many database crash conditions are transient (e.g., software
bugs, hardware faults, and user errors) and for these, restarting is a
reasonable approach to recovery. To ensure transaction durability,
traditional in-memory DBMSs periodically persist a copy (check-
point) of the database state and log subsequent updates. Recovery
consists of reloading the most recent persisted state, applying sub-
sequent updates, and undoing the effects of unfinished transactions.
For in-memory DBMSs reloading the persisted state is typically the
bottleneck in this process.

The advent of Storage Class Memory1 (SCM) has empowered
a new class of database architectures where memory and storage
are merged [1, 29, 23, 37]. SCM-enabled database systems keep
a single copy of the data that is stored, accessed, and modified
directly in SCM. This eliminates the need to reload a consistent

∗This author contributed to this work while interning at SAP.
1SCM is also referred to as Non-Volatile RAM (NVRAM) , Persistent
Memory, or simply Non-Volatile Memory (NVM)

state from durable media to memory upon recovery. SOFORT is
our own SCM-enabled database system. It is a prototype hybrid
SCM-DRAM in-memory storage engine that allows secondary data
structures (indexes, materialized views, etc.) to be kept either in
DRAM or in SCM. While SOFORT can achieve near instant recovery
if most secondary data structures are stored in SCM, there is a query
performance cost, as many of these data structures are latency-
sensitive and SCM is expected to have higher latencies than DRAM.
In previous work [31], we explored trading off query performance
for recovery performance by judiciously placing certain secondary
data structures in SCM. In this paper however, we assume that all
latency-sensitive secondary data structures are kept in DRAM as our
goal is to improve recovery performance without compromising
query performance.
SOFORT provides two different recovery strategies. In Syn-

chronous Recovery [29] on restart, after recovering the SCM-based
data structures, SOFORT rebuilds the DRAM-based secondary data
structures and then starts accepting requests. If the DRAM-based
secondary data structures are large, restart times can still be un-
acceptably long. To address this, we devised an Instant Recovery
strategy [31]. It allows queries to be processed concurrently with
the rebuilding of the DRAM-based data structures. However, while
the secondary data structures are being rebuilt, request throughput
is reduced. Part of the performance drop is due to the overhead
of rebuilding but a more significant factor is the unavailability of
the DRAM-based secondary data structures, resulting in suboptimal
access plans.

In this paper we propose a novel recovery strategy, Adaptive Re-
covery, that can benefit any main memory database, but is most
relevant for SCM-enabled databases, as they alleviate the traditional
recovery bottleneck of reloading data from storage to main mem-
ory, making rebuilding secondary data the new recovery bottleneck.
Adaptive recovery is inspired by the observation that not all sec-
ondary data structures are equally important to a given workload.
Adaptive recovery improves on instant recovery in two ways. First,
it prioritizes the rebuilding of DRAM-based secondary data struc-
tures based on their benefit to a workload (instant recovery simply
uses an arbitrary order). Second, it releases most of the CPU re-
sources dedicated to recovery once all of the important secondary
data structures have been rebuilt (instant recovery statically splits
CPU resources between recovery and query processing for the entire
recovery period).

Adaptive recovery aims at approaching peak performance of the
database as fast as possible by tuning the rebuild order of secondary
data structures to optimize the workload run concurrently with the
recovery process. To determine the optimal rebuild order, we con-
duct a characterization of secondary data structures in the SCM era.
Although we focus on indexes in this work, the characterization
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Figure 1: Results overview: TPCC transaction throughput dur-
ing recovery.

and the recovery algorithms are generic and apply to most runtime
data structures. We identify a set of properties that are intrinsic to
secondary data structures and infer from them the criteria based
on which they should be ranked, namely: (1) the usefulness to
the workload before failure and during recovery, (2) the cost of
rebuilding each secondary data structure, and (3) workload-related
dependencies between secondary data structures.

We propose two ranking functions that take into account these
properties. The first one satisfies items (1) and (2) while the second
one satisfies all three of them. Additionally, the ranking of secondary
data structures is adjusted dynamically to accommodate workload
changes during the recovery period. Furthermore, we introduce a
resource allocation algorithm that releases recovery resources to
query processing when it detects that all important secondary data
structures have been rebuilt.

We conduct a detailed experimental evaluation that shows the
benefits of our approach. Figure 1 shows potential performance
results. Our adaptive recovery approach significantly outperforms
synchronous recovery, since in adaptive recovery, the database ap-
proaches its peak performance well before the end of the recovery
process: approaching peak performance is no more a function of the
size of all secondary data structures but only of a small subset of
them, namely the relevant ones to the current workload. An inter-
esting observation is that synchronous recovery outperforms instant
(recover referenced indexes first) recovery. This result proves that a
sub-optimal ranking of secondary data structures can be harmful to
recovery performance.

The rest of the paper is structured as follows: Section 2 gives an
overview of necessary background. Then, Section 3 presents a char-
acterization of secondary data structures and our adaptive recovery
technique. Thereafter, we implement our approach in SOFORT and
conduct a thorough experimental evaluation in Section 4. Finally,
Section 5 surveys related work and Section 6 concludes the paper.

2. BACKGROUND
This section presents the context and the motivation of the re-

search question we address in this paper. First, we briefly describe
SCM and our hardware assumptions. Thereafter, we give an overview
of our prototype SOFORT. Finally, we discuss existing recovery
techniques for SCM-based main-memory databases.

2.1 Storage Class Memory
SCM is an emerging memory technology that combines the low

latency and byte-addressability of DRAM with the non-volatility,
density, and economic characteristics of existing storage media
(HDDs, SSDs). SCM exhibits asymmetric latencies in the same range

Table 1: Memory technologies comparison (adapted from [9]).

Parameter DRAM NAND RRAM PCM

Read La-
tency 60 ns 25 µs

200-
300 ns

200-
300 ns

Write Speed ˜1 GB/s 2.4 MB/s ˜140 MB/s ˜100 MB/s
Endurance 1016 104 106 106 − 108

Density 1× 4× 2− 4× 2− 4×

CPU

DRAM SCM

App/DBMS

Application
Virtual Memory

Figure 2: SCM is mapped directly in the address space of the
application.

as those of DRAM, with writes noticeably slower than reads. Ta-
ble 1 summarizes current characteristics of Phase Change Mem-
ory (PCM) [24] and Resistive RAM (RRAM) [14], two SCM candi-
dates, based on the latest research and industry announcements,
and compares them with current memory technologies. The ta-
ble shows that PCM and RRAM have a latency profile in the range
200-300ns. Other promising SCM candidates that were subject to
industry announcements include 3D XPoint 2, Spin Transfer Torque
RAM (STT-MRAM) [17], and Memristors [43].

Similar to flash memory, SCM supports a limited number of writes.
However, SCM promises to be more resilient; for example, PCM is
two to four orders of magnitude more resilient than flash memory.
Several works, such as [35], have already addressed this issue and
proposed wear-leveling techniques to increase the lifetime of SCM.
SCM can be architected in different ways: as high-performance

storage, as DRAM replacement, and as universal memory (main
memory and storage at the same time). In the latter, SCM is either
standalone or next to DRAM. The following sub-section presents our
memory architecture assumptions.

2.2 Memory Paradigm
In this paper we assume that future systems will be equipped with

a combination of DRAM and SCM that is visible to and controlled by
the application layer, as illustrated in Figure 2. Besides, we consider
that the latency of SCM will be in the range of 2− 5× the latency
of DRAM.

Furthermore, we expect that SCM might be attached to processors
in a way that allows memory semantics, i.e. the application can
directly access SCM using existing load and store instructions. The
cache hierarchy of today’s processors might cause a problem for
proper usage of SCM, as modified cache lines can still reside in
cache when a power failure occurs. In this work, we use cache line
flushing instructions and memory fences to enforce data durability.
SCM encompasses characteristics of both memory and storage.

In contrast to normal volatile memory, the memory management
of SCM requires means to rediscover memory after a restart. We
follow the approach of [9] where a file-system-like interface allows
to map SCM regions directly in the address space of the application.

2
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Figure 3: Slowdown incurred by using SCM over DRAM in
different micro-benchmarks.

Basically, the application first needs to open a file and then map it
using the existing mmap interface, acquiring direct access to SCM.
Indeed, using the new Direct Access3 (DAX) feature of the ext4
file system, no additional copy is needed and modifications of the
memory are directly persisted without any additional system calls.
In contrast, the usual implementation of mmap copies data from
SCM to DRAM.

SCM Emulation
To conduct our tests, we use a special system setup based on DRAM
that provides two additional capabilities: first, part of the memory
is separated out as a special memory region. We treat this memory
region as persistent memory. Second, thanks to a special BIOS, the
latency of this memory region can be configured. This allows us
to simulate the latencies of next-generation SCM. While this SCM
evaluation platform is equipped with two Intel Xeon E5 processors,
we bind the application to the first socket during our experiments to
uncouple NUMA effects from the effects of SCM’s higher latencies.
All tests were therefore conducted on a single processor with 8 cores,
each running at 2.6GHz and featuring 32KB L1 data and 32KB L1
instruction cache as well as 256KB L2 cache. The 8 cores share a
20MB last-level cache. A full description of this emulation system
can be found in [8].

2.3 Micro-benchmarks
To understand the performance implications of a hybrid SCM-

DRAM hardware architecture, we designed the following micro-
benchmarks: First, we evaluate the performance of sequential and
random reads in DRAM and in SCM. The size of the dataset is 1 GB.
Sequential read is implemented as a cache ping, i.e., one byte is
read from every cache-line-sized piece of the dataset, making the
whole of it go through L1 cache. As for random read, one byte
from the dataset is randomly read until the amount of read data is
equal to the size of the dataset. Second, as a real-world example of
sequential reads, we evaluate the SIMD-scan [42], an OLAP scan
operator over bit-packed integers usually representing dictionary-
coded values in a columnar representation, in SCM and in DRAM.
In this experiment, each integer value is represented with 11 bits,
and the size of the dataset is set to 200 million values, i.e., ˜262 MB.
Last, as a real-world example of random reads, we evaluate read
and write performance of a B+-Tree in DRAM and in SCM. In each
experiment, we first warmup the B+-Tree with 10 million tuples,
then we execute 10 million either read or write operations. Each
tuple is a pair of 8-Byte integers.

In all experiments, we vary the latency of SCM from 90 ns (i.e., the
latency of DRAM) up to 700 ns. Figure 3 depicts the experimental
3
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Figure 4: SCM-Enabled database architecture.

results. The y-axis represents the slowdown incurred by using
SCM over DRAM. For an SCM latency of 200 ns, we notice that
the slowdown for sequential read and SIMD-Scan is only 1.05×
and 1.04× respectively, while for an SCM latency of 700 ns the
slowdown increases but is limited to 1.81× and 1.65×, respectively.
This is explained by hardware and software prefetching that hide the
higher latency of SCM when detecting a sequential memory access
pattern. Besides, the slowdown with higher SCM latencies is due to
the fact that the hardware prefetcher is calibrated in the emulator for
DRAM’s latency. This can be fixed in real hardware by calibrating the
hardware prefetcher for SCM’s latency. We conclude that workloads
with sequential memory access patterns do not (or hardly) suffer
from the higher latency of SCM.

On the other hand, the performance of random read, B+-Tree
read, and B+-Tree write quickly and linearly deteriorates as we
increase the latency of SCM: for an SCM latency of 200 ns, the
slowdown is already 1.61×, 1.59×, and 1.78×, respectively, and
increases for an SCM latency of 700 ns up to 4.86×, 4.21×, and
4.40×, respectively. This is explained by the fact that a B+-Tree
has a random access pattern that triggers several cache misses per
read/write, amplifying the penalty provoked by the higher latency
of SCM. We conclude that workloads with random access patterns
significantly suffer from the higher latency of SCM. This result
motivates the need to use DRAM to enable faster query execution, as
keeping latency-sensitive data structures in SCM leads to a significant
performance penalty.

2.4 SOFORT
The advent of new hardware technologies and architectures, such

as SCM, is driving a necessary rethink of existing database architec-
tures to leverage the new opportunities brought by advancement in
hardware technology [38]. In that context, we explored the impli-
cations of SCM on database architectures and proposed SOFORT, a
hybrid SCM-DRAM storage engine designed from scratch to harness
the full potential of SCM [29]. SOFORT is a single-level store, i.e.,
it keeps a single copy of the primary data in SCM, directly operates
on it, and persists changes in-place in small increments. In the
following, we give a brief overview of SOFORT.

Architecture
Figure 4 outlines the move from a traditional database architecture
towards a system design exploiting SCM in addition to traditional,
transient RAM. In the traditional architecture, runtime data, the buffer
pool, and the log pool are associated with devices for durability. All
database objects in the buffer pool reflect a (potentially modified)
copy of the database state; runtime information is stored in main
memory and re-built during system startup. The demarcation line
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SOFORT Table Column c

ValId(c)iValId(Sc) Dict(c)ColumnsMVCC
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Figure 5: Overview of a column layout in SOFORT.

between transient memory and persistent storage is explicit and
traffic is managed by the database system using an eviction policy,
a log buffer, etc. Using a hybrid memory model consisting of
traditional RAM on the one side and SCM on the other side allows
for a radical change and a novel system architecture in different
perspectives. First, there is no need to copy data out of the storage
system but instead, we can directly modify the data stored in SCM.
Secondly, the use of persistent data structures in combination with
a compatible concurrency control scheme (e.g. MVCC) allows for
completely replacing the traditional logging infrastructure by fine-
grained, cheap micro-logging at data structures level. Lastly, certain
database objects can be stored in transient RAM or in SCM as long
as information loss can be guaranteed not to happen, i.e., index
structures can be stored in transient RAM and reconstructed during
recovery – more details can be found in [31]. Contrary to classical
designs, system runtime information (e.g. transaction tables, etc.)
can be easily and efficiently stored in SCM to improve system startup
time. Hence, the new major bottleneck in such systems during
recovery is the rebuild of DRAM-based secondary data structures.
We address this bottleneck in this work.

Data layout
SOFORT is a column-oriented in-memory storage engine that uses
dictionary compression. Figure 5 gives an overview of data orga-
nization in SOFORT. Tables are stored as a collection of append-
only columns. Each column c consists of an unsorted dictionary
Dict(c)[], stored as an array of the column’s unique data values, and
an array of value ids V alId(c)[], where a value id is simply a dic-
tionary index (position). For a given column c, Dict(c)[valueId]
is the value, from the column domain, encoded as valueId, while
V alId(c)[rowId] is the valueId of the column at position rowId.
These two arrays are sufficient to provide transactional durability:
we refer to these as primary data. SOFORT uses SCM as memory
and storage at the same time by keeping primary data, accessing
it, and updating it in-place in SCM. In other words, the working
copy and the durable copy of the data are merged. Other data struc-
tures are required to achieve reasonable performance including, for
each column c, a dictionary index iDict(c) that maps values to
value ids, and for each table, a set of multi-column inverted indexes
iV alId(Sc) that map sets of value ids to the set of corresponding
row ids. We refer to these structures as secondary data since they
can be reconstructed from the primary data. SOFORT can keep
secondary data in DRAM, in SCM, or in a hybrid SCM-DRAM format.
In this work however, we assume that all secondary data structures
are placed in DRAM for optimal query performance.

2.5 Recovery Techniques
In-memory DBMSs recover by rebuilding DRAM-based data struc-

tures from a consistent state persisted on durable media. The per-

sisted state consists of a copy (checkpoint) of the database state at a
particular point in time and a log of subsequent updates. Recovery
consists of reloading portions of the persisted state, applying sub-
sequent updates, and undoing the effects of unfinished transactions.
The major bottleneck in this approach is reloading the persisted state
from disks to main memory, which may take a significant amount of
time for large database instances. SOFORT removes this bottleneck
by keeping primary data in SCM and directly operating on it.
SOFORT recovers by first recovering primary data that is persisted

in SCM at a negligible cost, then undoing the effects of unfinished
transactions [29]. The last phase of the recovery procedure, that is,
rebuilding secondary data, can be handled in two different ways: in
the first approach, denoted Synchronous Recovery, SOFORT does
not accept requests until the end of the recovery process, i.e., until
all secondary data structures have been rebuilt. The main advantage
of this approach is that it rebuilds secondary data structures as fast
as possible since all system resources are allocated to recovery.
However, this approach suffers from the fact that the database is
not responsive during the whole recovery period – which might be
long as its duration depends directly on the size of secondary data
structures to be rebuilt.

To achieve instant recovery, SOFORT adopts a crawl before run
approach: it uses primary data, which is recovered at a negligible
cost, to answer queries, while secondary data structures, whose
purpose is to speed up query processing, are rebuilt in the back-
ground. For example, lookups to a dictionary index and an inverted
index are replaced by scans of the corresponding dictionary array
and the value ids arrays, respectively. Partially rebuilt DRAM-based
indexes can be progressively leveraged as they are being rebuilt.
For instance, a regular dictionary index lookup is replaced by the
following sequence: look up the partially rebuilt dictionary index; if
the value is not found, then scan only the portion of the dictionary
array that has not been indexed yet. Hybrid SCM-DRAM indexes,
however, need to be fully recovered in order to be leveraged. The
main advantage of this approach is that it enables instant recovery,
i.e., instant responsiveness of the database after failure. However,
it takes the database a considerable amount of time, longer than
for synchronous recovery, to approach peak performance observed
before failure. This is because system resources are split between
recovery and query processing, while in synchronous recovery, all
system resources are allocated to recovery.

Discussion
From the above description of different recovery techniques, we
observe that the bottleneck of recovery is shifted in SCM-enabled
databases from reloading primary data from durable media to main
memory, to rebuilding secondary data structures. Optimizing the
latter did not get much attention in the past because it was shadowed
by the former more prominent bottleneck. In this paper we propose



a solution to overcome this new bottleneck. Although synchronous
recovery and instant recovery exhibit interesting advantages, they
both suffer from (different) noticeable shortcomings. We try to cure
the shortcomings of both approaches by achieving instant respon-
siveness and reaching peak performance quickly, well before the end
of the recovery process. The following section explains in details
how we achieve this.

3. ADAPTIVE RECOVERY
Adaptive recovery is based on the observation that not all sec-

ondary data structures are equally important to a specific workload.
Therefore, rebuilding the most relevant ones first should signifi-
cantly improve the performance of the workload run concurrently
with the recovery process, eventually improving the overall recovery
performance. The following questions arise: What are the char-
acteristics of secondary data structures? How are secondary data
structures rebuilt? How can the benefit of a secondary data structure
be measured and estimated for a specific workload?

In this section, we answer these questions in order. We discuss
the recovery procedure of secondary data structures based on a
characterization of their recovery properties. Then, we introduce
benefit functions centered on the usefulness and rebuild cost of these
structures given a recovery workload. As the recovery process is
usually a very short period of time compared with the time the sys-
tem is in normal operation, the benefit functions must quickly adapt
to the current workload to maximize performance of the system
during recovery. A recovery manager will take into account the
workload right before the crash and the workload during recovery
to decide the recovery procedure of the secondary data structures
by answering these questions: what resources are allocated to the
recovery process? does the recovery happen in a background pro-
cess or synchronously with the statements needing them? and what
is the recovery order?

3.1 Recovery of Secondary Data Structures
Secondary data structures can reside in SCM or in DRAM. The

decision for this characteristic can be decided as part of the database
physical design process, based on cost estimated that takes into
account the schema, the base data properties, the workload, and how
fast the recovery process must be. In a robust system, when recovery
must be guaranteed to be almost instantaneous, it may be desired to
have all primary data and secondary data structures in SCM for fast
recovery. However, this approach will significantly impact query
performance as discussed in Section 2.3.

Secondary data structures, such as indexes, materialized views,
intermediate cached results are structures that can be completely
rebuilt from primary data. In this work, we identify and assume the
following general properties of using and maintaining secondary
data structures:
1. query processing can be correctly done (i.e. correct result sets)

without using any secondary data structures;
2. secondary data structures are used for improving global perfor-

mance;
3. the decisions to build and use them is cost-based taking into

account the cost of maintaining them, and the performance benefit
their usage will bring;

4. for a particular statement, the decision to use an available sec-
ondary data structure is cost-based;

5. secondary data structures may be useful when they are only
partially built, and the query optimizer will build correct plans
capable of compensating for missing data. For example, this can
be implemented using partially materialized views or cracked
indexes.

WoPast:
workload

before crash

WoRestart(t):
workload

during restart

Statistics:
{rebuild(s) — s}
{cost(Q,s) — Q,s}
workload history

Ranking Manager

Recovery ManagerResource Manager

Recov. Job 1 Recov. Job N

recommend next s to rebuildadapt

iterate until
end of recovery

...

Figure 6: Recovery framework of secondary database objects.

In an SCM-DRAM hybrid system such as SOFORT, secondary data
structures can be built and stored as follows:
• Transient data structures fully residing in DRAM. These struc-

tures must be fully rebuilt from primary data at restart to reach a
consistent state similar to the state before the crash.
• Persistent data structures fully residing in SCM and persisted in

real-time. These structures are available to be used by query
processing, almost instantaneously, after a recover process which
includes sanity checks and repairs if needed.
• Hybrid transient-persistent data structures partially residing in
DRAM, and partially in SCM (e.g., the FPTree [30]). The persistent
part must go through a recovery process which includes sanity
checks and repairs if needed. The transient part is rebuilt based
on one or both of the persistent part and the primary data.

Regardless of the type of a secondary data structure, the rebuild or
reload can be executed to completion for the whole structure, or it
can be partially done on a need-to-do basis based on the workload,
e.g., data cracking techniques [19]. Each secondary data structure
can be rebuilt right after restart or on demand, e.g., when this struc-
ture is first needed by a transaction (for writes or reads). These
decisions should be cost-based, balancing the performance benefit
for the workload during recovery with the overhead of recovery, i.e.,
reloading and rebuilding.

3.2 Benefit Functions for Secondary Data
Regardless of where a secondary data structure resides or what the

recovery process for a specific secondary data structure is, we can
compare and rank them based on the usefulness to past and current
workloads, and how expensive it is to rebuild them at recovery time.
Our goal is to maximize performance of the workload run in parallel
with the recovery process. In real database systems, the workload
right after restart can be similar to the workload at crash time (e.g.,
unfinished transactions are resubmitted after restart), it can be very
different (e.g., the system must execute a specific restart workload),
or a mixed workload including both special restart transactions and
resubmitted transactions. As the recovery time can be very short, the
benefit functions for secondary data structures must quickly adapt to
the current workload and available resources for recovery process.

At first glance, using benefit functions to rank the usefulness of
secondary data structures is similar to techniques used for indexes
and materialized views selection. Index selection has been studied
in the research literature, and most commercial database systems
have a physical design adviser tool (see, for example, [36] for a
survey). The main differences between index selection and our
ranking problem during recovery are:
1. index selection works with a large, known workload that is rep-

resentative of normal usage of the database system;
2. algorithms for index selection are run off-line, and can take

hours;



3. index selection deals with multi-objective functions, for max-
imizing workload performance and minimizing the total space
requirements for selected indexes;

4. the interaction among recommended indexes is implicitly cap-
tured in the algorithms employed by index advisers which heuris-
tically enumerate subsets of indexes and compare them based
on their estimated benefit. In [36], authors address the issue of
measuring interactions among indexes for a given set of recom-
mended indexes, with experiments showing that this particular
method can take minutes to run for a medium size set of indexes;

In contrast, computing the benefit of secondary data structures dur-
ing recovery is characterized by the following:
1. it is applied to a dynamic restart workload that can be very

different from the observed normal workload; this workload is
run for a very short period of time;

2. it is applied to a well defined schema of secondary data structures,
all of which must be rebuilt before the end of the recovery process.
However, many of them are not useful to this restart workload.
Our proposed method is based on computing when the recovery

starts, at time 0, an original ranking based on the immediate past
workload, and dynamically adjusting this ranking, during recovery,
based on the current workload. This dynamic ranking function can
use a benefit function that captures the estimated usefulness of an
index compared to other indexes. Below, we discuss the general
algorithm for ranking based on a given benefit function. We then
introduce two possible benefit functions that can be used for ranking.
We compare their properties and discuss how these can be computed,
on-line, during the recovery process.

We denote by SSCM the set of secondary data structures residing
in SCM that do not need to be rebuilt as they are available almost
instantly at restart time, and S the set of all secondary data structures
defined in the database schema. During recovery, all secondary data
structures in S \ SSCM must be rebuilt.

We assume that a query benefit function is available, Benefit(s,Q,S)
which estimates the benefit of a secondary data structure s ∈ S with
respect to the set S and the statement Q, such as the ones we will
introduce below, namely Benefitindep and Benefitdep. Given a work-
load W , a multi-set of statements (i.e., repeated statements are con-
sidered) and Benefit(s,Q,S), we define the benefit of a secondary
data structure s with respect to S for W as:

Benefit(s,W,S) = ΣQ∈W Benefit(s,Q,S) (1)

The rank of a secondary data structure s at restart time rank(s, 0) can
be computed based on the observed workload in the immediate past
of the crash WoPast and taking into account the estimated rebuild
cost (denoted here by rebuild(s)):

rank(s, 0) = Benefit(s,WoPast,S) (2)
− rebuild(s)

During recovery, the benefit of an index changes as the current
workload, run in parallel with the recovery procedure, progresses.
The content of the workload since the restart and up to current time t,
WoRestart(t), can be used to adjust the ranking rank(s, t) of the yet-
to-be-built structure s ∈ S. The ranking function must be effective
for all scenarios: the workload after restart is the same as before,
very different, or a combination. We propose a weighted average
with adjusted weights based on the number of statements observed
since the restart. As the recovery manager considers what to recover
next, rankings are adjusted and next best ranked index is rebuilt.
Because rebuild cost is considered in the rank() formula, the ranks
can be negative for data structures for which the rebuild cost exceeds

the benefit to the workload. With n = sizeof(WoRestart(t)), the
following formula computes the ranking at time t:

rank(s, t) =α(n) ∗ Benefit(s,WoPast,S) (3)
+ (1− α(n)) ∗ Benefit(s,WoRestart(t),S)

− rebuild(s)

α(n) can be defined such that it decays exponentially with n (e.g.,
α(n) = αn with 0 ≤ α ≤ 1) to increase the weight of the current
workload as more statements are seen during the recovery period.

3.3 Benefit Functions Benefitdep and Benefitindep

The above formulas require that a query benefit function, denoted
Benefit(s,Q,S), is available. We use in this work two benefit func-
tions, one, Benefitindep, based solely on the independent effect of
an index s on a statement Q, while the other, Benefitdep captures
the effect of the index s with respect to the whole set of defined
secondary data structures S.

We assume that the query optimizer can generate an optimal
plan, denoted by plan(Q, I) and its estimated cost, denoted by
Cost(Q, I), for a statement Q when only a subset of indexes I ⊆ S
are available for the query execution. If a secondary data structure
s ∈ I is used in plan(Q, I), we use the notation s ∈ S(plan(Q, I)).
We assume that there exists a well-behaved optimizer which con-
sistently builds the same optimal plan in the presence of the same
indexes: i.e., if I1 ⊆ I2, and S(plan(Q, I2)) ⊆ I1 ⊆ I2, then
plan(Q, I2) = plan(Q, I1).

We denote by tQ, the time duringWoRestart(t) when the query
Q was run, hence tQ ≤ t; and by S(t) the set of indexes available
for query execution at time t. Note that S(0) = SSCM , as the only
secondary data structures available at the start of recovery are the
indexes which are instantly recovered (i.e., stored in SCM).

for Q ∈ WoRestart(t),WoPast:
Benefitindep(s,Q,S) = Cost(Q,SSCM ) (4)

− Cost(Q,SSCM ∪ {s})

Benefitindep, in Eq. 4, is defined completely in isolation from and
independent of the other indexes in S \ SSCM . Using this func-
tion, rank(s, t) (cf. Eq. 3), captures what is the benefit of hav-
ing available just SSCM ∪ {s} when the workloads WoPast or
WoRestart(t) are run.

for Q ∈ WoRestart(t):
Benefitdep(s,Q,S) = Cost(Q,S(tQ)) (5)

− Cost(Q,S(tQ) ∪ {s})

for Q ∈ WoPast:
Benefitdep(s,Q,S) = (6){

Cost(Q,SSCM )− Cost(Q,S), s ∈ S(plan(s,Q))

0, otherwise

In contrast, Benefitdep, in Eq. 5, captures the dependency of indexes
that are used together in the best plans: for any index s participating
in the optimal plan ofQ at the time tQ, i.e., s ∈ S(plan(Q,S(tQ)∪
{s})), the cost difference between the current plan and the plan
using s, i.e., Cost(Q,S(tQ))− Cost(Q,S(tQ) ∪ {s}), is added to
rank(s, t) as per in Eq. 3.

To show how ranking is progressing during recovery, we picked
a set of interesting indexes from the TATP and TPCC benchmarks
used in the evaluation section and plotted the evolution of their
rank(s, t) functions during recovery in Figure 7, for both benefit
functions Benefitdep and Benefitindep. We choose α(n) = 0.99n,
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(d) TPCC: rank(s, t) w/ Benefitindep

Figure 7: rank(s,t) for TATP (20 Mio subscribers) and TPCC (50 Warehouses) during recovery : Benefitdep vs. Benefitindep.

which decays exponentially as the number of observed statements
n increases. S has 51 dictionary indexes (one per column) and 5
inverted indexes in TATP, and 94 dictionary indexes and 10 inverted
indexes in TPCC, all of which are stored in DRAM. In these figures,
each rank(s, t) function has the same line style for the same index
s. Note that indexes that have the same rank using Benefitindep

(Figures 7b & 7d) may not have the same rank using Benefitdep
(Figures 7a & 7c). However, for these particular benchmarks, both
query benefit functions result in the same ranking among indexes,
which gives the same rebuild order.

If s is not used in any optimal plans, its benefit for the workload is
0 (for both Benefitindep and Benefitdep), hence rank(s, 0) is nega-
tive because of the rebuild(s) cost, and rank(s, t) (= rank(s, 0))
is also negative until s is rebuilt during recovery. Figure 7 shows
a set of unused indexes during WoPast and WoRestart(t) and
their negative ranking.

As we assume that the decision to use a secondary data struc-
ture during query processing is cost-based, the estimated costs
Cost(Q,SSCM ), Cost(Q,SSCM ∪ {s}), and Cost(Q,S) needed
in Benefitdep and Benefitindep functions are computed by the query
optimizer during the query optimization of the statement Q. For ex-
ample, in Eq. 5, Cost(Q,S(tQ)) is exactly the estimated cost of the
best plan executed when Q was run at time tQ during recovery, with
the available indexes in S(tQ). The workload statistics capturing
WoPast can be collected as statement identifiers, with frequencies,
for a fixed window of time. Such statistics are usually recorded
anyway by real systems, for example, for security purposes, and
performance tuning.

3.4 Recovery Manager
In SOFORT, recovery starts with a recovery process of all persis-

tent data structures residing in SCM. This is an almost instantaneous
process. As all primary data is persisted in SCM, SOFORT will not
be available for new transactions until this initial recover process is
finished. According to definitions in SLAs, a system is considered
as available if users are able to connect. Hence, in SOFORT, avail-
ability is almost instantaneous after software failures. For Instant
Recovery and Adaptive Recovery, SOFORT allows new connections
right after recovering primary data. These new connections yield,
at each time t, the restart workload denoted by WoRestart(t). In
parallel, SOFORT performs the recovery of secondary data struc-
tures which need to be rebuilt, i.e., the ones residing in DRAM. As
resource allocation between the usual restart workload and the re-
covery process adapts to the current state, resources can be fully
allocated to the recovery process. All secondary data structures need
to be eventually rebuilt even if they are not useful to the current
workload. Under these constraints, the main goal is to maximize
throughput during recovery time.

The recovery process, as implemented in SOFORT, for secondary
data structures can be achieved in different ways: (1) recover all
secondary data structure before allowing any connections (referred
here as Synchronous Recovery); (2) recover a secondary data struc-
ture right before executing a statement that needs it. This decision
is cost-based on the rebuild time and the benefit to the statement;
(3) in a background recovery process that is invoked by the recovery
manager with either fixed or adjustable resources, using or not using
a ranking algorithm (referred here as Adaptive Recovery). In the
most optimized operation mode, the recovery manager consults a
ranking component that provides an updated ranking of the yet-to-be
built secondary data structures, and adapts the resource allocation
between query processing and recovery based on the new ranking.

Algorithm 1 RecoveryProcedure

1: R = maximum available resources
2: while ∃ secondary data structure yet-to-be built and ∃ free

resources out of R do
3: I = NextToRebuild(R)
4: /* Adjust resources based on I */
5: R′ = available resources to recover I
6: rebuild a subset of I using R′

Algorithm 2 NextToRebuild(R)

1: INPUT: R available resources
2: OUTPUT: a set I of secondary data structure to recover next
3: t = currrent time
4: n = sizeof(WoRestart(t))
5: for ∀s, a secondary data structure not yet rebuilt do
6: rank(s, t) = α(n) ∗ Benefit(s,WoPast,S)
7: +(1− α(n)) ∗ Benefit(s,WoRestart(t),S)− rebuild(s)
8: I = top ranked secondary data structures to be built using R

resources

Figure 6 shows the general recovery framework which handles
the recovery of secondary data structures. Right after restart, the
recovery manager starts recovery procedures for the highly ranked
secondary data structure. The recovery process is run in parallel with
other statements unless all resources are allocated to the recovery
process. The ranking at restart time rank(s, 0) is based on the
workload before the crash. the recovery manager can use adaptive
or static resource allocation as described in Algorithm 1 (line 4). As
recovery jobs finish and resources become available to the recovery
process again (line 5 in Algorithm 1), a current ranking is computed
and next secondary data structures candidates are chosen using



Algorithm 2. Secondary data structures with negative benefits will
be built last. Note that one way to adapt resource allocation is based
on the observed benefit of the most highly ranked secondary data
structure: the lower this benefit, the more resources we release to
query processing.

4. EVALUATION

Experimental Details
In our experiments, we use the SCM emulator that is described in
Section 2.2. We fix the latency of SCM to 200 ns which is more
than 2 x higher than the latency of DRAM (90 ns) in the emulation
system. Except if mentioned otherwise, we bind all tests to a single
socket (with 8 cores) to isolate NUMA effects from the effects of
SCM’s higher latency. Hyperthreading is disabled.

We use the Telecom Application Transaction Processing (TATP)
benchmark 4 and the TPCC benchmark. TPCC is the industry stan-
dard OLTP benchmark. Its schema encompasses nine tables and
it consists of five transaction templates. TATP is a simple but
realistic OLTP benchmark that simulates a telecommunication appli-
cation. The schema of the benchmark comprises four tables and the
benchmark consists of seven transaction templates. Unless specified
otherwise, we run the following query mixes in the experiments
below: (1) the ORDER STATUS (50%) and STOCK LEVEL (50%)
queries of TPCC, and (2) the GET SUBSCRIBER DATA (80%)
and UPDATE LOCATION (20%) of TATP. The experiments were
run using TPCC scale factor 32 (i.e, 32 Warehouses) and TATP
scale factor 500 (i.e., 5 Mio Subscribers), which corresponds to an
initial database size of 10 GB and 6 GB, respectively. We run the
benchmarks with eight users (clients) in all experiments. Table 2
shows the labels used for each experimental configuration, and helps
understand the legends of the figures in this section.

Table 2: Experimental Configurations.

Experiment Query Processing
Resources Recovery Resources Ranking

rk.Qx.Rz static x cores static z cores yes

¬rk.Qx.Rz static x cores static z cores no

rk.Qad.Rzad adaptive adaptive, start with z cores yes

Ranking Algorithm
In the first experiment, we run the aforementioned benchmarks
and simulate a crash. Then, we observe the recovery behavior of
different recovery strategies, where the restart workload WoRestart
is the same as the workload observed before the crash. The results
are depicted in Figure 8.
• ¬rk.Q0.R8: the recovery process is run synchronously. All

resources are allocated to the recovery process until its end, and
new transactions are not allowed before the end of recovery. We
consider this strategy as the baseline.
• ¬rk.Q6.R2: the recovery process is run in parallel with the re-

covery workload WoRestart, and the secondary data structures
are not ranked, i.e., they are recovered by prioritizing referenced
indexes. Although a noticeable increase in performance occurs
before the end of recovery, this strategy performs worse than
the synchronous one for TATP. Indeed, 15 s after the start of
recovery, only 0.4 million transactions were executed, which is

4
http://tatpbenchmark.sourceforge.net/
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Legend Entry
TATP TPCC

Rec. End #TXs t=15 s Rec. End #TXs t=15 s

¬rk.Q0.R8 13.9 s 0.9 M 13 s 169 K
¬rk.Q2.R6 15.5 s 0.4 M 16.5 s 246 K
rk.Qad.R6ad 63.7 s 6.4 M 65.2 s 838 K

Figure 8: Different recovery strategies with logarithmic scale.

less than the 0.9 million transactions executed in ¬rk.Q0.R8.
This result emphasizes the importance of ordering the rebuild of
secondary data structures according to their importance for the
workload. A careless ranking strategy can backfire and prove to
be harmful to recovery performance.
• rk.Qad.R6ad: the recovery process is run in parallel with the

recovery workload WoRestart, and the secondary data structures
are rebuilt based on our ranking function. Adaptive resource
allocation is enabled. This strategy outperforms both previous
strategies as throughput gradually increases to reach peak perfor-
mance. The performance of query processing surges earlier than
in ¬rk.Q6.R2. 15 s after the start recovery, 6.4 million and 0.83
million transactions were executed for TATP and TPCC respec-
tively, i.e., 5.5 million and 0.67 million transactions more than in
¬rk.Q0.R8, respectively.
Another important dimension is resource sharing between re-

covery and query processing. We experiment with several static
resource allocation configurations and report the results in Figure 9.
We notice that the more resources we allocate to the recovery pro-
cess the better the performance (cf. legend table): at time 30 s, the
best configuration (rk.Q0.R8) executes 1.29× more transactions
than the worst configuration (rk.Q6.R2). This result emphasizes
the importance of resource allocation. We also observe that the
figures are shaped like stairs, where a peak corresponds to the end of
the recovery of an important secondary data structures group. The
reason why the increase in throughput is in stair-steps and not linear
is the design of the benchmark: all users run the same mix of queries,
which means that even if only one single query did not regain its
optimal performance, it will drain the query throughput down across
all users. Hence, substantial improvements in throughput occur only
once the performance of all queries improves. This setup is not in
favor of our approach, as earlier benefits of our approach could be
observed in a different setup where users run different queries from
each other, or run the same queries on different copies of the data.

Although query throughput is less than 1% of peak performance
at the beginning, this still represents thousands of transactions per
second, which allows to run high priority queries. We also notice
that the more resources allocated to recovery, the sooner the first
stair-step appears and the lower it is. This is due to the fact that
more resources for recovery means faster rebuild of secondary data
structures (hence faster appearance of stair-steps) and slower query
processing due to lack of resources (hence, the lower the stair-steps).
The last peak that brings each configuration back to peak perfor-
mance takes place at the end of the recovery process, which again
happens sooner with more recovery resources, but configurations

http://tatpbenchmark.sourceforge.net/
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Legend Entry
TATP TPCC

Rec. End #TXs t=30 s Rec. End #TXs t=30 s

rk.Q6.R2 40 s 13.3 M 42.6 s 1.27 M
rk.Q4.R4 20.4 s 13.8 M 23.6 s 0.96 M
rk.Q2.R6 16.4 s 15.5 M 16.6 s 1.1 M
rk.Q0.R8 11.6 s 17.1 M 13.7 s 1.25 M

Figure 9: Static resource allocation impact on recovery.

with less recovery resources compensate with higher stair-steps.
An intuition that stems from this result is that a combination of all
configurations, such that recovery starts with more resources and
releases them gradually whenever query performance surges might
lead to a better recovery performance.

Adaptive Resource Allocation Algorithm
In this experiment, we investigate the efficiency of our adaptive re-
source allocation algorithm. The recovery manager is given specific
resources and is free to use them fully and/or return them partially/-
fully to query processing. Basically, the recovery manager decides
to give back recovery resources to query processing once it detects,
based on the benefit value of the most highly ranked index, that
enough secondary data structures have been rebuilt to allow the
system to run at nearly full speed. The remaining secondary data
structures are recovered in the background whenever the CPU idles.

Figure 10 summarizes the results of this experiment. Theoretically
allocating more resources to recovery should enable the database to
reach peak performance sooner. Notably, we observe that all other re-
covery configurations perform nearly equally, except rk.Qad.R2ad

which performs worse. This is explained by two factors. First, the
set of important indexes is small in our benchmarks, which means
that only a few recovery resources are needed. Second, having more
resources allocated to query processing allows to gain more knowl-
edge of the current workload, hence swiftly narrowing down the set
of important indexes to recover. The recovery manager can then
invest all available resources in rebuilding as quickly as possible
these indexes, and then give back all the resources to query process-
ing and continue rebuilding the remaining secondary data structures
in the background. As a consequence, the system reaches peak
performance before the end of the recovery process. An interesting
observation is that the stair-steps in the figure are not as explicit
as in static resource allocation. Actually, the gradual increase in
throughput results from the fact that some resources finish their job
and are released earlier than others.

Figure 11 shows a comparison between the best configuration
for static resource allocation and the best configuration for adaptive
resource allocation. We observe that at time 15 s, rk.Qad.R8ad

executes 1.41× and 2.26× more transactions than rk.Q0.R8, for
TATP and TPCC respectively. Also, for static resource allocation,
peak performance is regained only at the end of the recovery pro-
cess while for adaptive resource allocation, peak performance is
regained before the end of the recovery process. From this point on,
unless specified otherwise, we experiment with adaptive resource
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Legend Entry
TATP TPCC

Rec. End #TXs t=15 s Rec. End #TXs t=8 s

rk.Qad.R2ad 64.3 s 3.8 M 64.8 s 196 K
rk.Qad.R4ad 63.5 s 6.1 M 64.3 s 273 K
rk.Qad.R6ad 63.6 s 6.4 M 65.2 s 220 K
rk.Qad.R8ad 63.2 s 6.1 M 64.9 s 220 K

Figure 10: Adaptive resource allocation impact on recovery.
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Legend Entry
TATP TPCC

Rec. End #TXs t=15 s Rec. End #TXs t=15 s

rk.Q0.R8 11.6 s 4.3 M 13.7 s 373 K
rk.Qad.R8ad 63.2 s 6.1 M 64.9 s 843 K

Figure 11: Best of static vs. best of adaptive resource alloca-
tion.

allocation enabled. The adaptive approach brings a noticeable en-
hancement in recovery performance over the static one, but has the
drawback of prohibiting query processing at the beginning of recov-
ery in configuration rk.Qad.R8ad. For scenarios where allowing
query processing right from the beginning of recovery is crucial,
configurations rk.Qad.R6ad and rk.Qad.R4ad might be more inter-
esting. Moreover, allowing query processing as early as possible has
the advantage of enriching knowledge about WoRestart, hence
allowing to adapt to workload changes.

Resilience to Workload Change
This experiment is dedicated to studying the effect of changing
workloads during recovery. To do so, we execute different work-
loads before and after the crash: before failure, the full original
TATP and TPCC mixes are run; after failure however, only the
TATP and TPCC queries used in the previous experiments are run.
This approach has the benefit that the workload before failure uses a
superset of the indexes used by the workload after failure. Indeed, a
subset of the indexes is used more often while others are not used
anymore after failure, which makes it a good example to study the
importance of considering WoPast and WoRestart. We run configu-
ration rk.Qad.R6ad to allow adaptive recovery to gain knowledge
of WoRestart.

Figure 12 illustrates the results of this experiment. We observe
that at time 15 s, the adapting approach executes 1.27× and 1.25×



5 10 15 20
0

20

40

60

80

100

time [s]

T
hr

.[
%

of
pe

ak
pe

rf
.]

(a) TATP

5 10 15 20
0

20

40

60

80

100

time [s]

T
hr

.[
%

of
pe

ak
pe

rf
.]

(b) TPCC

Legend Entry
TATP TPCC

Rec. End #TXs t=15 s Rec. End #TXs t=15 s

no adapt to WoRes. 28.1 s 4.4 M 59.5 s 498 K
adapt to WoRes. 49.4 s 5.6 M 58.3 s 624 K

Figure 12: Impact of workload change during recovery.
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Legend Entry TATP Rec. End TPCC Rec. End

200ns 11.6 s 13.8 s
450ns 11.2 s 14.1 s
700ns 11.2 s 14.1 s

Figure 13: SCM’s latency impact on recovery performance.

more transactions than the non adapting one, for TATP and TPCC
respectively. This results clearly show the benefits of adapting to
changing workloads during recovery. Also, not taking into account
WoRestart in the ranking function could lead to a scenario similar to
the instant recovery approach, which might turn out to be harmful
to recovery performance. Other scenarios, such as using completely
different secondary data structures before and after failure, would
highlight much more the importance of considering WoRestart in
the benefit function.

Impact of SCM Latency
In this experiment we run the TATP and TPCC mixes described in
Section 4 with configuration rk.Q0.R8, and vary the latency of SCM
between 200 ns and 700 ns. We report the results in Figure 13. We
notice that while the peak performance of the system suffers from
higher SCM latencies, recovery does not. Indeed, primary data is
accessed sequentially in SCM to rebuild secondary data in DRAM.
The system reaches its peak performance approximately at the same
time for all latency configurations. In brief, the benefits of our
approach are almost independent of the latency of the SCM. Note
that the performance degradation is due to the materialization of
rows, where at least one random SCM access per column is executed.

Limits of Adaptive Recovery
To conduct a worst case analysis, we design a synthetic benchmark
that encompasses 10 tables with 10 integer columns each. All tables
have one million rows of distinct values. Similar to the previous
benchmarks, eight users run a mix of queries. The mix consists of
100 queries, each of which executes a simple select with a predicate
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Legend Entry Rec. End #TXs t=17 s

¬rk.Q0.R8 16.6 s 0.29 M
rk.Qad.R8ad 16.6 s 0.84 M

Figure 14: Worst case analysis: Adaptive recovery Vs. Syn-
chronous recovery.

on a single, distinct column. Overall, all columns are uniformly
queried. We report the experimental results in Figure 14. Theoreti-
cally rk.Qad.R8ad and ¬rk.Q0.R8 should perform nearly equally.
This is because all indexes have similar benefits and are equally
important to the workload. Hence, all orders of recovery should
yield similar recovery performance. Surprisingly, the difference
in performance is fairly large: rk.Qad.R8ad executed 2.9× more
transactions than ¬rk.Q0.R8 by the end of recovery (17 s). This is
thanks to adaptive resource allocation, that is, resources are released
as soon as the recovery job queue is empty, while in synchronous
recovery no resources are released until all recovery jobs are fin-
ished. We conclude that the performance of synchronous recovery
is a lower bound for the performance of adaptive recovery.

5. RELATED WORK
We divide related work into two categories: efforts to leverage

SCM to improve databases recovery performance, and traditional
main-memory database recovery related works.

5.1 SCM and Recovery
In our previous work [29], we propose a radical change in the

database architecture by leveraging SCM as memory and storage at
the same time, thanks to which we achieve fast data recovery, as
data can be directly accessed in SCM and does not need to be fetched
from disk to DRAM. We built a prototype called SOFORT, that we
extend in this paper. However, SOFORT’s recovery in [29] is limited
as it relies on rebuilding all secondary data structures synchronously
before allowing any new connections. This can result in high recov-
ery times for schemas with many and large secondary data structures.
Thereafter, we proposed in [31] an approach to remedy this issue,
which is to trade between query performance and recovery perfor-
mance by persisting some or all of the secondary data structures in
SCM. While this approach is interesting as it enables near-instant
recovery directly at maximum throughput, it compromises query
performance as the overhead of persisting secondary data structures
is not negligible: 14% and 30% when persisting 40% and 100% of
secondary data structures, respectively. The gain during recovery
is dwarfed by the loss in query processing performance over time.
In this paper, we alleviate both limitations of [29, 31] by using
an adaptive recovery approach that relies on a ranking function
of secondary data structures and an adaptive resource allocation
algorithm, allowing for significantly better recovery performance
without compromising query performance.

Schwalb et al. [37] proposed Hyrise-NV, an SCM-enabled ver-
sion of the Hyrisemain-memory storage engine [16]. Hyrise-NV
persists all its data structures in SCM, including secondary indexes,
while SOFORT adopts an SCM-DRAM hybrid architecture. Kimura [23]



proposed FOEDUS, a novel OLTP-oriented database system de-
signed to take advantage of upcoming servers with thousands of
cores and very large amounts of SCM. Contrary to SOFORT, FOEDUS
uses DRAM as a cache for SCM and provides durability through tra-
ditional write-ahead logging. Arulraj et al. [1] investigated three
ways of leveraging SCM in databases, namely in-place updates, copy-
on-write, and log-structured updates. They conclude that in-place
updates outperform the two other approaches. In addition, they study
the corresponding recovery techniques and demonstrate that, like in
SOFORT, there is no need to reload primary data nor to apply a redo
log since transaction changes are made persistent at commit time.
However, they rely on traditional logging techniques. To remedy
this issue, they proposed Write-Behind Logging [2], a minimalistic
logging technique that, coupled with multi-versioning, persists new
tuples before writing the corresponding log entry. This enables it to
stores a reference instead of the full tuple in the log. However, the
authors do not take into consideration the rebuilding of DRAM-based
data structures.

Chatzistergiou et al. [4] propose REWIND, a log-based user-mode
library that manages persistent data structures in SCM in a recov-
erable state. They show that REWIND-based recovery outperforms
traditional I/O based recovery techniques by up to two orders of
magnitude. However, REWIND incurs an overhead to the overall sys-
tem performance and handles only SCM-based data. Pelley et al. [34]
propose two architecture alternatives, namely in-place updates and
NVRAM group commit, to optimize OLTP durability management
and speed-up recovery. In the in-place updates architecture, writes
are done directly to SCM, while reads are optionally performed
through a software-managed DRAM cache. In the NVRAM group
commit architecture, writes are buffered in DRAM and propagated to
SCM when a transaction batch commits. Both architectures do not
need a redo phase during recovery, but they still rely on traditional
write-ahead logging for the undo phase. In contrast, SOFORT treats
SCM as in the same level of DRAM, and goes further into getting rid
of a traditional logging.

Several works focused on improving the logging infrastructure
of traditional database systems [11, 12, 41, 18]. Our approach is
radically different: We propose a green field approach that leverages
SCM as memory and storage at the same time for the whole database,
which enables to do away with a transactional log. Finally, several
works investigated SCM-optimized persistent data structures [39,
30, 6, 45], while other works investigated optimizing database al-
gorithms, such as sorting and joins, for SCM [5, 40]. These works
are orthogonal, though related to ours. Indeed, to leverage the full
potential of SCM, there is a need to redesign classical main-memory
data structures to make them persistent in SCM, and to optimize
database algorithms to account for the read/write latency and band-
width asymmetry of SCM.

5.2 Recovery of main-memory databases
Since our design avoids traditional logging, most existing recov-

ery techniques do not apply to our work. Nevertheless, for the sake
of completeness, we briefly review state of the art database recovery
techniques.

Garcia-Molina et al. [13] provide a detailed discussion of tradi-
tional recovery techniques, such as techniques presented by Jagadish
et al. [20, 21], Eich et al. [10], and Levy et al. [25] for main-memory
databases. All of them rely on logging and snapshotting, which
are not needed in our recovery algorithm. In this family of tradi-
tional recovery techniques, ARIES [28] is without doubt the most
well-known recovery technique.

The Shore-MT team focused on improving logging efficiency by
eliminating log-related contention [22, 32, 33]. Besides, Cao et
al. [3] propose a main-memory checkpoint recovery algorithm for

frequently consistent applications. Furthermore, Lomet et al. [26]
and Malviya et al. [27] investigate logical logging-based recovery
techniques. Finally, Goetz et al. [15] present a technique called
Instant Recovery with Write-Ahead Logging, that is based on on-
demand single-page recovery. However, this technique does not
apply to our architecture, as we do not use paging.

More recently, Yao et al. [46] studied the recovery cost of dis-
tributed main-memory database systems, investigating in particular
the differential in recovery cost between transaction-level and tuple-
level logging. Further, Wu et al. [44] proposed Pacman, a fast and
parallel recovery mechanism for main-memory databases. Pacman
assumes database transactions to be executed exclusively through
stored procedures, which it analyzes at compile time to identify
independent parts that can be executed in parallel during recovery.

6. CONCLUSION
The advent of SCM has enabled single-level database architec-

tures to emerge. These store, access, and modify data directly in
SCM, alleviating the traditional recovery bottleneck of main-memory
databases, i.e., reloading data from storage to memory. Thus, the
new recovery bottleneck for such systems is rebuilding DRAM-based
data. In this paper, we addressed this bottleneck and presented a
novel recovery technique that relies on: (1) a characterization of
secondary data structures, (2) a ranking function for secondary data
structures that takes into account the workload before and after crash,
and (3) an adaptive resource allocation algorithm. We presented two
benefit functions for secondary data structures: the first one consid-
ers indexes independently while the second one takes into account
indexes interdependence. Our recovery algorithm aims at maximiz-
ing performance of the workload run in parallel with recovery. We
have implemented adaptive recovery in our SCM-enabled database
prototype, named SOFORT. Through a thorough experimental eval-
uation, we have shown that our approach significantly outperforms
the existing synchronous and instant recovery approaches. In addi-
tion, the adaptive resource allocation algorithm brings a significant
performance improvement over static resource allocation. We have
demonstrated that our ranking functions adapt well to workload
changes during recovery and significantly outperform rankings that
do not take into consideration the recovery workload. Additionally,
our adaptive recovery is robust and invariant with respect to SCM la-
tency changes. Finally, our work paves the way for the development
of next-generation database architectures on SCM.
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