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ABSTRACT
As NUMA systems grow in complexity, the average distance
of memory increases. Because the number of parallel read
requests is limited, this reduces the bandwidth available to
the CPUs. Also, the cost of cache coherency increases as
atomic operations are synced across multiple hops. We ex-
plore how these problems can be alleviated by offloading
NUMA accesses to the interconnect hardware and show how
databases can profit. For cross-NUMA table scans, we re-
port a performance improvement of up to 30%; for atomic
increments as used for transaction sequencing up to 10x, and
for latches up to 8x. These experiments were performed on
an SGI UV300 system but demonstrate the general value of
explicit memory instructions.

1. INTRODUCTION
Modern business applications rely on responsive data an-

alytics and transaction processing with a single source of
truth. Motivated by this need and the availability of large
main memory capacities, more and more customers of enter-
prise software move to state-of-the-art in-memory database
systems. Due to the rapid growth of data as well as the
increasing comprehensiveness of queries, the compute re-
sources of a single server system are not sufficient anymore.
Especially for in-memory database systems, main memory
capacity and bandwidth needs to be scaled beyond the limit
of a single box. For this, databases can either be scaled out
or scaled up. While the scale-out solution requires signifi-
cant efforts to adapt the database software (e.g., fault tol-
erance, explicit communication, Two-Phase Commit), large
scale-up solutions provide an elegant way to scale existing
software at lower costs [8].
The SGI UltraViolet family (recently acquired by HPE)

is one example of such a large scale-up system. Those sys-
tems consist of multiple individual rack units (IRU) that
are connected via a NUMAlink system interconnect. Fig-
ure 1 shows a block diagram of a single IRU of an SGI
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Figure 1: SGI UV300 block diagram, based on [9].

UV300. As illustrated, the HARP ASIC is a key compo-
nent that connects the IRU’s processors to the systemwide
NUMAlink interconnect. Additionally, the HARP is re-
sponsible for maintaining cache coherency and providing a
common address space across the IRUs. Since NUMAlink
adds an additional layer to the interconnect hierarchy, re-
mote memory accesses are becoming more costly, similar to
a scale-out setup. Hence, such large scale-up NUMA sys-
tems face network topology related problems in terms of (1)
reduced bandwidth and increased latency for remote memory
accesses and (2) the strongly limited scalability of atomic
memory operations (e.g., latches) as a consequence of the
comprehensive cache coherency protocol. To cope with this
issue, recent database research proposed adaptive partition-
ing strategies [2, 3, 5, 6] to decrease the number of remote
memory accesses and strategies to reduce the need of atomic
memory operations in general [1, 4]. However, due to vary-
ing workload patterns as well as shared data structures and
intermediate results, neither remote memory accesses nor
atomic memory operations can be completely avoided.
Aside from these software-based approaches, hardware

vendors are also developing new features to address the net-
work topology related problems. For instance, the HARPs in
a SGI UV system employ a Global Reference Unit (GRU) fa-
cilitating a proprietary API to accelerate respectively offload
memory operations within a NUMA architecture. In par-
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ticular, the GRU provides functionality to asynchronously
copy memory between processors and to accelerate atomic
memory operations. In this paper, we treat the SGI UV
and its GRUs as a playground to investigate the overall po-
tential of hardware-accelerated main memory operations for
in-memory database systems. In detail, we investigate the
capabilities of the GRU to speed up database operations and
remove bottlenecks in a typical in-memory database system.
The contributions of this paper are:

(1) We give an in-depth overview of the SGI UV archi-
tecture and detail on the functionality provided by
the Global Reference Unit (GRU) API. Moreover, we
demonstrate how to program the GRU.

(2) We evaluate the capability of the GRU to accelerate
and offload processor-to-processor main memory copy
operations.

(3) We evaluate GRU-accelerated atomic memory opera-
tions to eliminate usual bottlenecks in database systems
such as obtaining transaction timestamps or protecting
critical sections.

Outline. The remainder of this paper is structured as
follows. In Section 2 we discuss the necessary background
of the SGI UV and the GRU API. Afterwards, we evaluate
the processor-to-processor copy operations and use cases for
databases in Section 3 as well as atomic memory operations
in Section 4. Finally, we discuss the related work in Section 5
and conclude the paper in Section 6.

2. BACKGROUND
As already mentioned, the HARP is the main compo-

nent that connects multiple four-socket units (called IRUs
or blades). This is achieved by bringing together two inter-
connect networks: QPI on the side of the IRUs, and the pro-
prietary NUMAlink between all HARPs in the system. To
plug into the coherent interconnect between the four CPUs
within one IRU, the QPI connections between CPUs 0-3
and 1-2 are removed. This frees up one QPI port, which
is then used to connect the CPUs to the HARPs (see Fig-
ure 1). Each HARP serves two CPUs, so that two HARPs
are needed per IRU. On the NUMAlink side, the HARPs are
fully connected. The two HARPs within one blade are also
connected with each other via two NUMAlink connections.
A key component of the HARP is the Global Reference

Unit. Every HARP contains two GRUs, each connected
with one of the IRU’s processors via a QPI link. Their main
function is allowing the connected CPU to address off-blade
memory. The GRU presents itself as another participant
in the QPI network. As such, it translates addresses that

are outside of the local IRU. This is done by looking up
the data’s location in the coherency directory (or a cached
version thereof). Also, the GRU is responsible for transpar-
ently wrapping QPI stores and loads into NUMAlink net-
work packages and unwrapping them on the receivers side.
In normal operation, HARP and GRU work together to

provide a transparent extension of the memory space. Pro-
grammers do not need to be aware that the system is com-
prised of multiple, cache-coherently connected four-socket
systems. During execution, the only hint that the program
is executed on such a machine is the increased latency of
off-blade memory accesses, which is just under 500 ns. This
latency also affects the maximum bandwidth because each
core’s number of concurrent read requests is limited and
longer waits mean more expensive memory stalls.
To better utilize the NUMAlink network, it can be prof-

itable not to use the transparent translation, but to explic-
itly instruct the GRU. For this, SGI provides an API that
can be used both in user and in kernel mode to directly inter-
act with the GRU. The first part of the API consists of meth-
ods that create and manage the hardware resources needed
for explicit GRU memory operations. The steps needed to
prepare for GRU operations are documented in man 7 gru.
We will focus on the second part of the API, which includes
the memory instructions as described in Table 1.
In this paper, we will use the memory transfer and the

atomic memory operations. These will be described in the
appropriate sections in detail. All discussions are based on
experiments that we ran on a UV 300 with four IRUs, each
having four Intel E7-8890 v2 processors with 15 cores and
768 GB of DRAM at 1333 MHz. This sums up to 240 phys-
ical cores (480 logical) and 12 TB of main memory.

3. BCOPY
The first operation that we evaluate towards its potential

for in-memory databases is gru_bcopy. Its function signature
can be found in Table 2. Not to be confused with the depre-
cated string copy method from the C library, it is a method
that uses the GRU to copy data from system memory to
system memory. As such, its end result can be compared to
that of memcpy. While memcpy causes the executing processor
to execute a number of load operations from remote mem-
ory and waits until all cache lines have been transferred,
gru_bcopy handles the memory transfer asynchronously and
outside of the processor. Since the nodes within one IRU are
connected via QPI, using gru_bcopy can only bring a ben-
efit when out-of-blade memory is accessed. This is shown
in Figure 2: (1) The gru_bcopy instruction is issued by the

Memory Transfer
gru_bcopy, gru_bstore, gru_[i]vload,
gru_[i]vset, gru_[i]vstore

Transferring data between system memory to the GRU or to a different area of system
memory, initializing system memory with a set value; "i" versions use indirect (i.e.,
indexed) addressing.

Atomic Memory Operations (AMO)
gru_game[r], gru_gami[r], gru_gamxr,
gru_ivramiw, gru_ivramew

Support atomic changes to remote memory. Other than regular x64 atomic opera-
tions, which retrieve the memory and perform operations locally, these are executed
by sending the appropriate command to the remote GRU.

Message Passing
gru_mesq

A method specifically for MPI message queues, this method sends a message to a re-
mote queue. Compared to software implementations that take five network traversals,
this hardware-supported method only needs two.

Operative
gru_nop, gru_vflush

As GRU methods are asynchronous, nop is needed as a method to abort running
instructions. vflush flushes one or more cacheline(s) from all nodes in the network.

Table 1: List of the data manipulation methods supported by the GRU API
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void gru_bcopy(gru_control_block_t *cb, const gru_addr_t src, gru_addr_t dest, unsigned int tri0, unsigned
int xtype, unsigned long nelem, unsigned int bufsize, unsigned long hints);

cb Pointer to the GRU ressource that controls execution, a so called control block.
src Pointer to the data source.
dest Pointer to the data destination.
tri0 Offset in the current GRU buffer. Can usually be ignored, i.e., set to zero.

xtype Type of elements that should be copied. It’s easiest to use XTYPE_B, i.e., bytes, here and specify the number of bytes in the
next parameter, nelem. Using a larger type, e.g., XTYPE_DW, does not seem to have any impact on the performance.

nelem Number of xtype elements that should be copied.

bufsize Number of cache lines used as buffer. This significantly influences the performance. With the maximum of 128 cache lines,
we observed a 22× higher throughput compared to the smallest possible buffer size of 4 cache lines.

hints Bit mask for execution hints, currently only for ordering certain read references. Unused in this paper.
Table 2: The function parameters of gru_bcopy.

requesting CPU and sent to its HARP. (2) The GRU within
the HARP identifies the remote node where the data is lo-
cated and requests the cache line (CL) from that HARP. (3)
The remote HARP uses its QPI network to load the cache
line from the appropriate CPU. (4-6) That CPU uses a reg-
ular memory load to retrieve the memory from its system
memory and returns it to its HARP. (7) The remote HARP
sends the cache line to the local HARP, where it is stored
in the HARP’s buffer. (8-9) The local HARP transfers the
cache line from its buffer to the targeted memory address.

gru_bcopy has three advantages over regular CPU loads
from remote nodes: First, because its execution is asyn-
chronous and can transfer multiple cache lines at once, the
CPU gets freed up and can perform other computation in
the time that would otherwise be lost in memory stalls. Sec-
ond, CPUs are limited in their memory access performance
by their maximum number of outstanding read requests. For
current x86 CPUs, this means that ten L1D cache misses can
be worked on at the same time. After this, the core has to
wait for one request to finish. The effects of this can be seen
when measuring the maximum bandwidth of a single core,
which does not reach the possible bandwidth of the entire
CPU. This problem gets worse with increased NUMA dis-
tances, as experienced in a massive scale-up system. When
the memory latency doubles, the maximum number of out-
standing requests would have to double as well to keep the
bandwidth the same. Since this is not the case, the band-
width of a single core is limited. The HARP, on the other
hand, supports a significantly higher number of outstand-
ing requests and can achieve a higher bandwidth when ac-
cessing remote memory. Third, using the GRU utilizes the
directory-based cache coherency protocol in a more efficient
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Figure 2: How gru_bcopy moves a cache line (CL) from
remote memory to local memory.

way. While this does not directly affect a single memory
access, it reduces the coherency effort, increasing the amor-
tized performance. We will now look at how these three
reasons translate into a measurable performance impact.

3.1 Performance Comparison with memcpy
To get a baseline for the benefit of replacing CPU reads

with GRU-supported memory transfers, we measured the
maximum bandwidth when copying data from off-blade
memory to local memory. The results are shown in Figure 3,
with the x-axis displaying the size of the transferred memory
block and the y-axis the achieved memory throughput on a
single core. Our findings are the following: (1) As expected,
memcpy does not use the full NUMAlink bandwidth of 7.5
GB/s [9]. (2) Using gru_bcopy brings us significantly closer
to this maximum, at least when large amounts of memory
are transferred. (3) In that case, gru_bcopy has a 2.4x per-
formance advantage over memcpy, which uses regular CPU
stores and loads. For smaller chunks of data, gru_bcopy suf-
fers from a performance hit of up to 4x.
These benchmarks have been executed without taking the

constant cost of initializing the GRU control structures (i.e.,
control blocks and contexts) into account. This is because
for databases, the initial subsecond cost is incurred only once
during DBMS startup. The spike measured between 105 and
106 Bytes for memcpy is seen only on our test machine and
has not been observed on single-blade systems. As it is not
relevant to our findings, we will not discuss it further.

3.2 GRU-Accelerated Off-Blade Column
Scan for Database Systems

A main advantage of a column-oriented in-memory
database is the support for unindexed table searches. This is
made possible by having the prefetcher load data before it is
needed, not loading parts of cache lines that hold irrelevant
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Figure 3: Performance comparison of gru_bcopy and memcpy.
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data (i.e., data from other columns), and a combination of
an efficient dictionary compression and bit-packed attribute
vectors [10]. Fast scans allow users to formulate queries that
the database has not been optimized for and, in return, al-
lows them to explore their data with new levels of freedom.
As such, optimizing their performance translates to direct
benefits for the users. While the maximum performance has
already been achieved for node-local scans, this is not the
case for off-blade scans in scale-up systems. These suffer
significantly from the higher latency, which translates to a
loss in bandwidth due to the memory stalls caused by a low
number of supported parallel reads.
One might argue that the execution of the scan should be

moved closer to the data, and that optimizing the off-blade
scan is unnecessary. Of course, performing only local scans
is preferable. Still, there are cases in which, even with a
NUMA-aware database, off-blade scans cannot be avoided:
(1) if the cores of the remote node are busy themselves and
moving the execution would lead to higher load imbalances,
(2) if the scan is part of a larger chain of operators that
is better suited for a different node, e.g., as an input to a
following operator or in a JIT-compiled operator chain.
In these cases, gru_bcopy helps us by providing a higher

bandwidth from the remote memory. Instead of directly
accessing the remote memory, we first copy it to local, fixed-
size buffers using a double buffering approach. This is shown
in Figure 4. While gru_bcopy is moving data into one buffer,
we can scan the data in the other. This is made possible by
the asynchronous nature of the GRU operations. The scan
is done by calling the regular scan operation on the buffers.
As long as the buffer size is chosen so than no values are
cut in half, this does not require any code modifications in
the scan itself. For database vendors, this means that the
deviation in the code base is limited to a single place, the
GRU proxy. Listing 1 gives an example.

3.3 Benchmarks
For evaluating the performance of the GRU-accelerated

scan, we use the proprietary scan implementation of a
commercial DBMS. Three questions are of interest here:
(1) What is the performance gain? (2) For which column
sizes does the GRU scan make sense? (3) How to tune pa-
rameters, such as the GRU buffer size, for optimal results?
Figure 5 shows the results of scanning a single off-blade

column with a varying size being scanned either with or
without GRU support. The y-axis displays the time spent
per row during the scan. This allows for easier interpre-
tation than absolute numbers, which would obviously in-
crease with growing columns. The results are very simi-
lar to those shown for the memcpy comparison in Figure 3.
Again, the GRU shows a significant performance improve-
ment over regular CPU loads. Here, we were not able to
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chosen GRU Block Size.

reach the maximum of 2.4x; instead, we see a performance
improvement of 30% for two reasons. Firstly, the memcpy
benchmark has a read:write ratio of 1:1, while the ratio of
the scan depends on the size of the values. If the values are
bit-packed into 10 bits and the result is 1 bit, the read:write
ratio is 10:1. This means that more time can be spent read-
ing data. Thus, the worst-case bandwidth of the CPU is
3.5 GB/s, compared to 2 GB/s for memcpy. The gru_bcopy
instruction, on the other hand, performs a streaming copy,
which is why this effect does not play as much of a role.
This also explains why the break-even point is different in
the two benchmarks. Secondly, the test machine only sup-
ports AVX, not AVX2, and we expect a more significant per-
formance improvement with AVX2 [11]. A second finding is
that using the GRU only makes sense for columns with more
than twenty million entries. With an entry size of 10 bits,
this makes 10/8 ∗ 20, 000, 000 ≈ 23MB. However, many ta-
bles in an enterprise system as targeted by this architecture
are bigger by orders of magnitude and easily reach multiple
gigabytes. Even when these are partitioned, the partitions
are significantly bigger than 23 MB.
We found one parameter to be of high importance for good

performance with gru_bcopy: the size of our local buffers.
As there is a certain fixed cost associated with each GRU
transfer, the time needed to copy to a buffer that is too small
is dominated by the fixed cost. For a buffer that is too large,
offloading and double-buffering does not work properly, as
there are longer time slots in which either the GRU or the
CPU are idle. Figure 6 shows this effect. In this case, the
optimal block size is around 262K. The regular scan does
not use double-buffering and does not have any blocks.

4. ATOMIC MEMORY OPERATIONS
The GRU API provides instructions for executing atomic

memory operations on a single double word or on multiple
double words. In the following, we will focus on the sin-
gle double word instructions as they are commonly used in
database systems and experimentally evaluate their feasibil-
ity. In particular, we will present the results for two critical
components of an in-memory database system:
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uintX_t * buffer_1 = ( uintX_t )( numa_alloc_local ( block_size ));
uintX_t * buffer_2 = ( uintX_t )( numa_alloc_local ( block_size ));
uintX_t * buffers [] = {buffer_1 , buffer_2 };

gru_bcopy (cbs [0] , remote , buffers [0] , 0, XTYPE_B , block_size , 128 , 0);

for ( size_t block = 0; block < block_count ; ++ block ) {
if ( block < block_count - 1) {

// fetch next
gru_bcopy (cbs [( block + 1) % 2], remote + elements_per_block * ( block + 1) ,
buffers [( block + 1) % 2], 0, XTYPE_B , block_size , 128 , 0); }

// process current
gru_wait (cbs[ block % 2]);
uintX_t * current_buffer = buffers [ block % 2];

for (int block_offset = 0; block_offset < elements_per_block ; ++ block_offset ) {
// regular scan operator comes here - this one is very simple
if ( current_buffer [ block_offset ] == search_value ) {

matches_out . emplace_back ( RowID {0, block_offset }); }}}

Listing 1: A simplified implementation of a GRU-supported column scan

Atomic Counter Increments Atomically incrementing a
single counter value is a critical operation for the trans-
action management but usually does not scale within
a single processor and even less so in an entire NUMA
system. For instance, multi-version concurrency con-
trol (MVCC) relies on counters for obtaining a trans-
action timestamp in a sequential order.

Latches Database systems employ latches to protect non-
parallelized code sections against the concurrent access
of multiple threads. Those code sections are usually
global critical sections or fine-grained latches within
single data structures such as trees or columns.

Table 3 lists the four available atomic single double word
instructions of the GRU. Each instruction takes a pointer to
the target double word as well as the specific operation as
parameters. The return value of an instruction is written to
the issuing control block after a successful completion. The
respective instructions differ in two ways from each other:
Explicit Operands. Operands for the respective instruc-

tion are either given implicitly or explicitly. Hence, in-
structions with implicit operands only support rather
basic operations such as fetch-and-increment where
the operand is implicitly given as a 1. Instructions
with explicit operands allow more sophisticated op-
erations such as compare-and swap, which needs two
additional operands.

Registered/Buffered. While non-registered instructions
directly operate on the main memory the targeted dou-
ble word is located in, registered operations buffer the
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Figure 7: Internal functioning of atomic memory opera-
tions. Schematic view of a 4-IRU NUMA system. Red sys-
tem components are involved in the execution.

referenced double word (DW) within the local GRU
memory. Thus, the double word is likely to be cached
in multiple GRUs.

In Figure 7, we visualized the difference between CPU,
GRU, and registered GRU atomic memory instructions. It
schematically depicts a NUMA system consisting of four di-
rectly connected IRUs as well as the internal memory hi-
erarchy of an IRU ranging from GRU memory, over local
socket main memory, up to the local CPU caches.
The traditional way of executing atomic memory opera-

tions is via locked CPU instructions (e.g., a LOCK ADD). As
shown in Figure 7(a), the actual operation is performed by
the local hardware threads causing the referenced double
word to be cached by multiple processors on multiple IRUs.
The major drawback of this approach is that the processors
and GRUs spend high efforts for maintaining the cache co-
herency across the individual caches of the hierarchy, which
results in a high interconnect activity and instruction la-
tency. In contrast, a basic GRU atomic memory instruction
is exclusively executed by the GRU that is connected to
the processor that hosts the referenced double word in its
memory. As shown in Figure 7(b), the referenced double
word is cached nowhere, which saves the high overhead of
the cache coherency protocol. Finally, the registered GRU
instruction depicted in Figure 7(c) additionally buffers the
referenced double word in the local memory of the individual
GRUs and does not operate on the memory itself. Hence,
the effective atomic memory operation is executed on the
instruction issuing GRU, which requires additional efforts
to ensure the internal memory coherency across the GRUs.
Experimental Setup. The overall aim of our following

evaluation is to measure the scalability as well as the ab-
solute throughput of the three different ways of executing
atomic memory operations. As previously discussed (cf.,
Figure 7), the performance of the instructions depend on
where the executing threads and the collocated GRUs are
placed. Therefore, we employ the following two thread allo-
cation orders for our evaluation:
Natural Thread Allocation. This thread allocation or-

der starts with filling the first socket (physical cores
followed by HyperThreading siblings) and afterwards
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GRU Instruction Explicit Operands Registered/Buffered Supported Operations
GRU_GAMIR Fetch, Clear, Fetch-and-Incr, Fetch-and-Decr
GRU_GAMIRR X

GRU_GAMER X Swap, Or, And, Xor, Add, Compare-and-Swap
GRU_GAMERR X X

Table 3: Overview of single double word atomic memory operations.
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(c) Medium contention; interleaved thread allocation.
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Figure 8: Comparison of atomic counter increments using LOCK ADD, GRU GAMIR and GRU GAMIRR.

continues with the next socket.
Interleaved Thread Allocation. The interleaved thread

allocation order allocates the threads in a round-robin
fashion across the sockets, also starting with the phys-
ical cores followed by the HyperThreading siblings.

Moreover, we modify the contention on the referenced
double word by adding artificial delays during the atomic
memory operations. While the high contention setup uses
no delay, the medium contention and low contention setups
induce a medium respectively high delay. In the follow-
ing, we will present our scalability and throughput results
for atomic counter increments and latches as use cases for
database systems.

4.1 Atomic Counter Increments
Obtaining sequentially ordered values respectively times-

tamps at a global level is a crucial bottleneck for database
systems. Hence, in this section, we investigate if GRU-based
instructions are able to relax the bottleneck compared to
traditional atomic CPU instructions. In our experiments,
the active threads try to increment a global counter while
obtaining the previous value. The appropriate CPU in-
struction is a LOCK ADD (__sync_fetch_and_add intrinsic).
The corresponding GRU instruction is GRU_GAMIR using the
fetch-and-increment operation.
Figure 8 visualizes the results of the experiment. Each

chart shows the throughput in millions of atomic incre-

ments per second for the CPU instruction (LOCK ADD), GRU
instruction (GRU_GAMIR), and registered GRU instruction
(GRU_GAMIRR). For all experiments, we varied the number
of active threads allocated in the respective order.
Figure 8(a) gives the measurements for the high con-

tention setup using the interleaved allocation order. We
observe that the CPU instruction achieves its peak perfor-
mance with only a single thread and is continuously decrea-
sing when activating more threads. In contrast, we observe
an ideal scalability of the GRU instruction until the point
of 184 threads is reached and the throughput remains al-
most constant. Due to the additional overhead of issuing
GRU instructions compared to CPU instruction, we also
observe a higher throughput of the CPU instruction with a
low number of threads until the equilibrium is reached with
44 threads. The registered GRU instruction exhibits a low
absolute throughput as well as a bad scalability.
Figure 8(b) shows the results for the natural thread al-

location order. In general, we observe the same behavior
as for the interleaved allocation order. Nevertheless, there
exist two differences. (1) The GRU instruction scales step-
wise, because threads of the same socket share the same
GRU, and thus reaches its maximum throughput later with
232 threads. (2) For the CPU instruction, we observe two
points where the throughput suddenly rises (31 threads) re-
spectively drops (121 threads). Since each socket comprises
of 30 hardware threads, the first effect happens when switch-
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(a) NUMA socket 1 - 4 (IRU 1 only).
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(b) NUMA socket 1 - 5 (IRU 1 and 2).
Figure 9: Comparison of atomic counter increments for a mix of LOCK ADD and GRU GAMIR. One thread of the respective
NUMA sockets uses LOCK ADD. Remaining threads use GRU GAMIR. High contention and interleaved thread allocation.
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(a) High contention.
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(b) Low contention.
Figure 10: Comparison of a latch using test-and-set and GRU GAMER (CSWAP). Interleaved thread allocation order.

ing to the second socket of the first IRU and the second effect
occurs as soon as a thread on the second IRU is activated.
In Figure 8(c) and 8(d) we stay with the interleaved allo-

cation order and present the results for the medium and
low contention setup. As both measurements show, the
GRU instruction clearly outperforms the CPU instruction
in terms of scalability and absolute throughput. However,
the CPU instruction still exhibits a better throughput with
a low number of threads, but the turning point is already
reached with 6 threads. The registered GRU instruction
remains at a low throughput.
In a final experiment, we reflect on the internal function-

ing of the GRU by mixing CPU and GRU instructions. As
a specific test setup, we use the interleaved allocation or-
der under high contention. However, we modify the exper-
iment in a way that all threads use the GRU instruction,
except for the first thread on a socket which uses the CPU
instruction. This causes the referenced double word to be
cached by the respective processor. In Figure 9 we visualize
the measurements for the CPU instruction-only setup (LOCK
ADD) as well as the GRU instruction mixed with some CPU
instructions (CPU/GRU Mix). For Figure 9(a), we executed
CPU instructions only on the first thread of socket 1 - 4,
which belong to the same IRU. We observe that the mix of
CPU and GRU instructions starts with a higher absolute
throughput, because the first four threads use the CPU in-
struction. Nevertheless, adding threads that use the GRU
instruction results in a worse scalability, but still reaches the
same peak throughput as the GRU instruction-only exper-
iment (cf., Figure 8(a)). If we additionally allow the first
thread of the 5th socket (different IRU) to use the CPU

instruction instead of the GRU instruction, we obtain the
measurements shown in Figure 9(b). As shown, both config-
urations – CPU-only and instruction mix – behave almost
the same leading to the conclusion that the cache coherency
protocol over QPI and NUMAlink is the root cause for the
lack of scalability and solely using GRU instructions by-
passes this bottleneck.
Conclusions. With the help of GRU instructions we

are able to speed up atomic counter increments, which are
used in database systems to obtain timestamps, up to an
order of magnitude. Our experiments revealed that GRU
instructions scale up almost ideally for realistic medium and
low contention scenarios. Moreover, we identified the cache
coherency protocol as the main bottleneck CPU instruction-
based counter increments.

4.2 Latches
Database systems avoid latches as much as possible. How-

ever, the usage of locks is still inevitable, because threads
need to synchronize the work and their access to shared data
structures, for instance, while materializing intermediate re-
sults. Hence, we investigate scalability and throughput of
latches in this section by comparing CPU instruction-based
and GRU instruction-based latch implementations.
Both latch implementations are user space spinlocks. The

CPU instruction implementation uses the test-and-set to
acquire the lock instruction and sets the latch to zero to
release it. The GRU implementation uses the compare-and-
swap operation via the GRU_GAMER instruction for lock acqui-
sition and the clear operation via the GRU_GAMIR instruction
for lock release. During the experiments, we measure the

7



number of successful entries and the failed attempts.
Figure 10(a) and 10(b) show the measurements (latch en-

tries per second) of both implementations for the interleaved
allocation order and both high and low contention setups.
For both contention setups, we observe a similar behavior.
The CPU instruction-based implementation shows a higher
throughput for a low number of threads until the break-even
point of 20 threads is reached. While the CPU instruction’s
throughput continuously decreases, the GRU instruction-
based implementation is able to scale up until its plateau
is quickly reached and starts to slowly decrease afterwards.
Nevertheless, starting from the break-even point, the GRU
implementation always outperforms the CPU implementa-
tion. The chance to successfully acquire the lock (normal-
ized to the number of threads) is 32% for the CPU imple-
mentation and 99% for the GRU implementation.
Conclusions. Employing GRU instructions for imple-

menting inevitable latches in database systems significantly
increases the number of successful latch entries per second.
This performance advantage originates from bypassing the
cache coherency efforts in the CPUs, which induces a signi-
ficant overhead for CPU instruction-based latch implemen-
tations as the normalized chance to enter a latch reveals.

5. RELATED WORK
Recent works propose adaptive partitioning strategies to

reduce remote memory accesses [2, 3, 5, 6]. The same ap-
proach applies for atomic operations, which are distributed
or avoided by better parallelization strategies [1, 4]. How-
ever, since operators need to exchange data, synchronization
and cross-socket data transfers are usually inevitable.
The discussed HARP that hosts the GRUs is a represen-

tative of the ASIC family. For instance, Wu et al. proposed
a new instruction set specifically designed for database op-
erations implemented in a ASIC called Q100 [12]. The in-
struction set is very similar to SQL operators and can handle
most TPC-H queries showing a performance increase of fac-
tor 2-3, while only consuming 15% of the energy drawn by
CPU implementations. Such ASICs are usually very focused
on a specific set of application. In contrast, the HARP ASIC
virtually improves any scenario that heavily relies on moving
large amounts of data across the NUMA systems.
A comparable solution for scale-out database setups is

RDMA [7] sharing the paradigm of offloading memory trans-
fers between individual nodes of a cluster. The GRU is the
pendant for scale-up setups and additionally provides a co-
herent cache across all nodes.

6. CONCLUSIONS AND FUTURE WORK
In this work, we showed how databases on large NUMA

systems can profit from offloading their distant memory
loads and utilizing explicit access instructions to increase
their effective throughput. We showed how using SGI’s
gru_bcopy operation can bring a 30% performance improve-
ment to full table scans, how the GRU’s atomic memory
operations can improve transaction sequencing by an order
of magnitude and reduce the cost of latches by a factor of
eight. Furthermore, we explain what factors have an in-
fluence on the effectiveness of these improvements and in
which cases they are best used. These results warrant fur-
ther research into coupling core database operations closer
with the memory hardware.

With regards to the bcopy operation, we are looking
into using it for more algorithms. More specifically, we
are experimenting with a GRU-accelerated join that moves
intermediary results between nodes using bcopy. This is
relevant for large databases, where intermediary results are
sometimes in the hundreds of gigabytes or even terabytes
and their move across the NUMA network cannot be
avoided. We are also evaluating how parallel GRU oper-
ations influence regular memory accesses and other GRU
operations. Together with the influence factors presented
above, this will play a role in the DBMS’ decision of when
to use the GRU.
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