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ABSTRACT
Join is one of the most important operators in database
query processing. Its research progressively focuses on
hardware-conscious implementations since single-threaded
performance improvements of general-purpose processors
will slow down in the next years. SIMD extensions, multi-
threading as well as multi-core processors may further lead
to performance advantages. Besides that, multiprocessor
system-on-chips (MPSoCs) are a suitable platform to keep
up with high-performance processors while providing an up
to three orders of magnitude lower power consumption.

In this paper, we study the implementation of hash
join algorithms on MPSoCs and exemplarily employ the
Tomahawk4 chip. Tomahawk4 integrates four processing
modules each equipped with tightly-coupled SRAM as well
as an instruction set extension tailored to hashing algo-
rithms. An external DRAM serves as shared main mem-
ory and can be accessed by DMA transfers. We aim to
best exploit the architecture and to adapt the algorithms
to the MPSoC. Hence, we compare two hash table designs
according to their memory accesses and investigate the per-
formance impact of the additional hashing instructions. Fur-
thermore, the MPSoC platform allows power measurements
with different clock frequencies and supply voltages to find
the configuration with highest energy savings. Our experi-
ments on the MPSoC show that four database-specific cores
outperform a standard RISC CPU by up to factor 5 while
consuming less than 200 mW.

1. INTRODUCTION
Nowadays, tuning database algorithms to the underly-

ing hardware is a frequently studied research topic. Al-
though processor performance has dropped from about
50 % to about 20 % per year [15], improvements originate
from hardware-specific features such as multi-threading and
SIMD towards many-core systems. General-purpose pro-
cessors like Intel Xeon, AMD Opteron or Sun UltraSPARC
deployed in modern database systems provide the required
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throughputs by exploiting the mentioned hardware features.
Besides these high-performance CPUs, GPUs are also well
suitable for query processing due to high parallelism and su-
perior memory bandwidths [18]. They only suffer from the
limited amount of main memory and time-consuming copy
processes between CPU and GPU.

Besides the performance requirements, power consump-
tion becomes important as well, especially when consider-
ing applications such as Mobile Edge Computing [17] where
data processing is shifted closer to the user and thus away
from data centers which provide (almost) unlimited power
supply. The high energy efficiency of multiprocessor system-
on-chips (MPSoCs) makes them an interesting platform to
accelerate database operators. MPSoCs comprise domain-
specific hardware accelerators such as ASICs and ASIPs
with high instruction and data level parallelism. These
cores usually run at clock frequencies below 1 GHz to pro-
vide low power consumptions. In this work, we are heading
towards database-specific accelerators integrated in an MP-
SoC which are tailored for energy-efficient hash joins. Ini-
tially, MPSoCs require higher development costs than CPUs
but benefit from flexibility regarding core-to-core communi-
cation, latency, and reliability. However, the memory bot-
tleneck is still a challenge as we will report in this paper.

We choose the join operator since it is one of the most
important operators used in relational query processing.
Applications such as data mining [9] and information re-
trieval [28] benefit from efficient join implementations. In
this paper, we focus on the hash join algorithm for two main
reasons: 1) Prior work [21] has shown on a set of data an-
alytic workloads that hash-table-based indexing operations
employed in hash joins are the largest single contributor to
the overall execution time. 2) In our previous work [1], we
reported that the underlying hashing algorithms are worth-
while for hardware acceleration and will improve the hash
join performance. In particular, our contributions can be
summarized as follows:
• We describe two hash join algorithms which combine

state-of-the-art solutions regarding partitioning of in-
put data and hash table design.
• We adapt the algorithms to best exploit our MPSoC

architecture which includes hardware-accelerated pro-
cessing elements.
• We provide performance and power measurements of

the algorithms on the Tomahawk4 MPSoC. We are
then able to compare the selected algorithms by inves-
tigating the effect of number of cores and additional
hashing instructions.



The remainder of the paper is organized as follows: Sec-
tion 2 provides the necessary background of the join oper-
ator and discusses state-of-the-art implementations and so-
lutions. Section 3 presents the MPSoC platform used for
evaluation and explains the hash join implementations. Af-
terwards, the experimental results are shown in Section 4.
Finally, we conclude the paper in Section 5.

2. BACKGROUND AND RELATED WORK
This section provides the necessary background informa-

tion about join algorithms and summarizes state-of-the-art
implementations.

2.1 Join Operator
The join operator is a common operation used in SQL

queries. In this paper, we focus on the implementation of
the equi-join or inner join. The query can be expressed as

SELECT *

FROM R, S

WHERE R.A = S.B

It returns all matching tuples of relations R and S where the
respective values of attributes A and B are identical. Basi-
cally, the three most known implementations are 1) nested-
loop join, 2) sort-merge join, and 3) hash join. Since the
nested-loop join simply iterates over the two relations by us-
ing two nested loops, it has a time complexity of O(|R||S|).
Even though partitioning and parallelization is trivial, it al-
ways results in a poor performance. The sort-merge join
can be computed by a single run over both sorted relations.
The sorting problem defines the complexity which is at least
O(n logn) for a merge-sort algorithm [20].

Differently, the hash-based join can operate on unsorted
data. In a first build phase, the smaller relation, say R, is
mapped into a hash table by using a hash function. The
actual join is performed in a subsequent probe phase where
tuples from S are compared with the records from R stored
in the hash table. An optimal hash function is adapted to
the data set and should reduce the number of collisions to
provide short access times on the indexed tuples. A collision
in the hash table occurs when two different keys obtain the
same hash value and, thus, are mapped to the same bucket.
Several works already studied the efficiency of different hash
functions [4, 27]. However, we want to focus on the over-
all performance constraint by the system and, hence, use
the simple bit selection described in Section 3.2. The hash
join may outperform the sort-merge join in a cache based
multi-core system as reported by [5, 19, 25]. However, the
authors also conclude that their sort-merge join implemen-
tation executes faster with higher SIMD widths, i.e., with
more appropriate hardware features as well as limited mem-
ory bandwidths.

Our MPSoC evaluation platform provides only small local
memories which are tightly coupled to the processors (more
details in Section 3.1). Hence, the main memory access
time significantly impacts the overall execution time. Even
though, we decided to focus on the implementation of hash
joins since the cores support hardware-accelerated hashing
instructions.

2.2 State-of-the-Art
A lot of research has been done on the implementation of

hash joins in multi-core systems. Most of the work exploit

general-purpose CPUs and adapt the hash join algorithm ac-
cording to the underlying processor architectures and mem-
ory subsystems [6, 8, 22]. Especially the authors in [6] con-
clude that hardware-conscious algorithms perform signifi-
cantly better than the hardware-oblivious counterparts.

Efficient partitioning methods are provided by [10, 24, 29]
and minimize cache misses when accessing the hash table.
For instance, Manegold et al. [24] show a radix-clustering
algorithm to partition the input relations which we also
adapted to parallelize the hash join on the MPSoC. How-
ever, Blanas et al. [8] report that simple hash joins with-
out partitioned input relations are very competitive to other
more complex implementations. Note that for our work, it
is essential to partition the data and use distributed hash
tables without synchronization since the high-latency main
memory access in the MPSoC platform prevents the usage
of latched hash table buckets. Instead, we took another
idea of [8] where bucket entries are connected by linked lists
which makes the algorithm robust for an unexpected high
ratio of collisions in the hash table.

The aforementioned approaches do not incorporate hard-
ware extensions such as SIMD or instruction parallelism in
multi-core systems. Nevertheless, Balkesen et al. [5] and
Kim et al. [19] run their hash join and sort-merge join al-
gorithms on multi-core Intel processors supporting simulta-
neous multi-threading while the sorting step was advanced
by 128-bit SSE and 256-bit AVX instructions. Although
the sort-merge approach obtains an advantage by additional
instructions, their results reveal that hash-based join algo-
rithms can still be around 2× faster than sort-merge joins.

The introduced massive parallelism in graphics proces-
sors can be easily applied for GPU-based joins [18, 23, 31].
Amongst other join algorithms, [31] implements a hash join
which contains a partitioning step followed by a join step.
The approach is similar to the one used in our work, where
partitioning is based on hash values and a histogram is used
to obtain sorted tuples in the input relations.

Besides the broad range of join implementations on
general-purpose platforms, the attention to low-power chips
which integrate application-specific processing elements
seems to grow as well. For instance, the authors in [30]
consider basic database operators such as sorting and aggre-
gation on the Tomahawk2 MPSoC. They only use general-
purpose processing elements but conclude that emerging
hardware features will improve the performance of query
operators. The work in [12] takes this idea and inte-
grates database-specific processing elements into an MPSoC.
Compared to state-of-the-art platforms, their manufactured
Tomahawk3 chip achieves an 96× energy improvement for a
scan benchmark. In this paper, we also follow this approach
and especially study the hash join on the next Tomahawk
generation – Tomahawk4.

Gedik et al. [11] developed the so called CellJoin which
focuses on a windowed stream join operator executed on the
Cell processor. The Cell processor is similar to our used MP-
SoC platform and also includes processing elements (Syner-
gistic PEs – SPEs) equipped with a local memory. In con-
trast to the special hashing instructions provided by Toma-
hawk4, the SPEs only support general-purpose instructions
on 128-bit SIMD registers. Even though, the CellJoin out-
performs an SSE implementation on a dual-core Intel Xeon
processor by factor 8.3.



In summary, this paper provides the next steps to ex-
ploit state-of-the-art algorithms (in particular hash join) as
given by the literature and to apply them to low-power MP-
SoCs with application-specific hardware accelerators. The
findings are essential to build an energy-efficient system for
database query processing which is capable to offload data-
intensive operations from high-performance processors.

3. IMPLEMENTATION
After reviewing state-of-the-art join realizations in Sec-

tion 2, this section presents our hash join implementation.
Therefore, we first discuss the evaluation platform to under-
stand the design restrictions. This is followed by detailed
descriptions of the hash join algorithms.

3.1 MPSoC Platform
Before studying the actual hash join implementation, it

is helpful to understand the requirements and constraints
given by the underlying hardware. Hence, we first present
the MPSoC platform which is used for all evaluations. The
Tomahawk4 MPSoC [14] is a heterogeneous multi-core plat-
form combining SDR capabilities and database processing.
It relies on the Tomahawk concept [3] which provides a
fully programmable many-core system with runtime man-
agement. Thereby, the control flow of the application is
mapped on the system. The actual computation is per-
formed by multiple processing modules (PMs) which may
include one or more processing elements (PEs). A PE might
be a common RISC, DSPs, or specialized hardware acceler-
ators (ASIC, ASIP). In addition, each PM has local SRAM
which is tightly coupled to the PEs.

In particular, Tomahawk4 contains four PMs each com-
prising an ARM Cortex-M4 and a Tensilica Xtensa LX5
core, both sharing a local memory with 64 kB for data and
instructions each. The concept is aimed for the isolated ex-
ecution of single tasks in the PMs by using the local mem-
ory. However, a shared off-chip DRAM is connected by an
LPDDR2 interface. This memory access is only possible
by using the direct memory access (DMA) controller inte-
grated in each PM. Furthermore, the Tensilica processor is
tailored to the energy-efficient execution of basic hashing
operators. We refer to the LX5 as the database accelera-
tor (DBA) which is explained in more detail in Section 3.2.

Task scheduling and power management is provided by a
control subsystem including an application core (APP) and
the central scheduling unit called CoreManager (CM). The
APP is a general-purpose CPU (Tensilica 570T) with full
MMU which uses a 32 kB cache and the DRAM as main
memory. It usually executes the application code which is
split into multiple tasks. The CM is an Xtensa LX5 RISC
and is responsible for analyzing these tasks according to data
dependencies in order to map them to the PMs. This also
includes initiating data transfers as well as power manage-
ment. For our purposes, the CM directly maps the query
execution plan to the DBAs (i.e. the hash join algorithm)
whereas the APP only allows to compare the parallelized
hash join with a single-core cache-based processor.

In Tomahawk4, the power management concept is based
on a dynamic voltage and frequency scaling [16]. All four
PMs can be individually connected to one of three power
supply rails with preset voltages in the range of 0.6 - 1.1 V
and predefined clock frequencies between 100 and 500 MHz.
An integrated power management controller enables a fast
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Figure 1: Simplified Tomahawk4 MPSoC platform
with 8 routers connected in a hexagonal structure.

switching between the supply rails. The CM can control the
power management by adapting the performance according
to the system’s workload.

All components are connected by a packet-switched
hexagonal network-on-chip (NoC). One packet transfers
64 bit of payload per cycle at 500 MHz resulting in a link
throughput of 32 Gbit/s. In comparison to a rectangular
mesh NoC, it provides higher reliability when NoC links are
heavily occupied or faulty [26]. Furthermore, the NoC is
built upon a GALS approach (globally asynchronous, lo-
cally synchronous) to enable individual clock domains of
each module. This requires buffers placed on the interfaces
between the modules and the NoC. The FPGA interface
connects an FPGA board to access a host PC and to enable
chip-to-chip interconnections. Figure 1 depicts the MPSoC
focusing on the main components used for database process-
ing.

In summary, the MPSoC provides a complete system in-
cluding application-specific processing modules to study the
performance of different hash join implementations accord-
ing to processing speeds, memory bandwidths as well as
power consumption.

3.2 Database Accelerator
The DBA is built upon an ASIP approach, i.e., the ba-

sic LX5 RISC is adapted by 1) an extended instruction set,
2) two load/store units (LSUs) for parallel access to two
local data memories, and 3) a 128-bit wide memory inter-
face width for SIMD capabilities. Figure 2 depicts a PM
with the DBA, DMA, and the local memory. The concept
was already evaluated for a wide variety of database oper-
ations [1, 2, 13]. In this paper, we focus on the extended
instruction set for hashing algorithms published in [1]. The
following paragraphs briefly explain the hashing algorithm
and specific instructions.

We choose a hash function which selects b bits out of a 32-
bit integer value representing the key in a key-payload tuple.
A hash mask denotes the position of appropriate bits. The
selected bits from the key are shifted to the right to obtain a
b-bit wide hash value. The resulting hash table now contains
2b buckets. For example, with a given hash mask of 1011b

and a key value of 12 (1100b), we obtain a hash value of
4 (0100b). In the following, we assume b ≤ 16 to limit the
size of the hash values and the hash table, respectively.
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The LX5 core operates on 32-bit general-purpose regis-
ters and supports typical arithmetic and logical instructions.
The described integer hash function requires the extensive
usage of bitwise operators which consume a large number
of cycles. To speedup the hash function, we use a devel-
oped instruction which combines all bitwise operators and
enables to hash a key within one clock cycle. This instruc-
tion as well as specific load/store instructions are applied
to 128-bit SIMD registers which contain four keys. For an
n-fold SIMD approach, speed increases linearly with n and
area grows with n2. Hence, 128-bit wide registers and in-
terfaces are an acceptable trade-off between area and per-
formance. Moreover, the two data memory interfaces allow
to load and process on two SIMD registers simultaneously.
This again doubles the overall performance. Compared to
the pure RISC execution, a final speedup of 1055× can be
achieved. We refer to [1] for more details.

3.3 Hash Join
As explained in Section 2.1, we cover the equi-join on two

relations R and S. We further assume that both relations
with cardinalities |R| and |S| consist of unsorted tuples of
32-bit keys and 32-bit payloads represented as unsigned in-
tegers where the keys are used for comparison for the join.
Initially, all tuples of R and S reside in DRAM. As men-
tioned in Section 3.1, the PMs of the MPSoC operate on
their local memory and data from DRAM is transfered by
using the DMA integrated in each PM. To ensure a continu-
ous execution, we apply the concept of a ping-pong memory.
The local memory is split into two arrays: one is used to
load chunks from R and S, respectively, while the processor
performs on the other one. The purpose of both arrays is
switched for the next chunk to establish a pipelined execu-
tion.

We presume |R| ≤ |S| so that R is target to be mapped
into the hash table. Consequently, the hash table has at least
|R| bucket entries and will be placed in DRAM as well. This
leads to multiple implementation challenges which we have
to address.

DRAM access latency: Compared to the local memo-
ries, DRAM accesses from the PMs are much more expensive
in terms of read latency and throughput. Hence, it is im-
possible to use a shared hash table for multiple PMs since
this would require locks for synchronization. We decide to
focus on individual hash tables assigned to each PM.

Memory mapping: Furthermore, the DRAM is only
accessible via single DMA transfers and, thus, cannot be
mapped into a data memory region of the PMs. For this
reason, the central CM assigns the DRAM addresses of hash
tables for each PM before runtime.

Input data: We assume to have no prior knowledge
about the input data as well as number of duplicates. This

also leads to an undefined number of collisions in the hash ta-
ble and requires an adjustable number of buckets and bucket
sizes.

We want to find the concept which best exploits the
given MPSoC architectures and fulfills the aforementioned
requirements. Hence, we investigate and compare two hash
join implementations which basically differ from the hash ta-
ble structure: 1) a partitioned hash join which uses a hash
table build with linked lists, and 2) a hash join based on
radix-partitioning with a histogram based hash table. The
following subsections explain the implementations in more
detail.

3.3.1 Hash Table with Linked Lists
The first hash join approach is similar to [8] and uses

a hash table where bucket entries are connected by a
linked list (LL-HT). A bucket entry stores the key and the
pointer (index) to the next tuple of this bucket. This index
is used as reference to establish a linked list. Information
about the position of the first and last key as well as the
number of bucket entries is stored locally in each PM.

The following hash join is described for the execution with
p processors (DBAs). The complete build input R is trans-
ferred to all p processor. Each processor i (i = {1, ..., p})
then performs the following steps (cf. Figure 3):

(1) Hash R: Iterate over R and calculate the hash val-
ues h(R). Chunks of R which fit into the local memo-
ries are successively loaded from DRAM. Loading and
processing is alternately executed on two arrays in a
pipelined fashion as described earlier.

(2) Insert R to hash table: Check each tuple in R
if it belongs to an assigned range of hash values
hi−1 ≤ h(Ri) < hi. Ri and h(Ri) are now denoted as
the applicable tuples and hash values of processor i,
respectively. Insert keys of Ri into hash table i which
belongs to processor i. This generates p independent
hash tables. When inserting the keys, always use a new
entry in the hash table. If a tuple is already assigned to
the determined bucket, add the current entry’s index
to the previous inserted tuple of this bucket.

(3) Hash S: Iterate over S and calculate the hash val-
ues h(S) in the same manner as for R in step (1).

(4) Join: Access the hash table with the hash values h(Si)
assigned for processor i, compare the keys in Si with
the found keys from Ri, and store matching tuples.
Continuously write back the result to DRAM.

The described partitioning is similar to the radix join
from [24] while the radix bits are now selected by the hash
function. This ensures that no data dependencies occur be-
tween the partitions. Furthermore, the solution is highly
scalable due to the non-blocking execution, i.e., the hash ta-
ble is built in a single run over R. Furthermore, the hash
table stores all tuples successively in memory. Except for
collisions in the hash table, this results in a single predictable
write access per tuple.

Figure 3 also illustrates a sample procedure to fill the
hash table with one partition Ri of processor i. The keys of
each tuple are hashed by the hash function as described in
Section 3.2. In this example, we assume that all hash values
are in the range between hi−1 = 0 and hi = 16 otherwise the
corresponding tuples would be omitted from the hash table.
The chosen hash mask leads to a collision in the hash table
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Figure 3: Hash join with linked list in hash table
(LL-HT) executed on p processors. The example be-
low shows the hashing (1) and the insert (2) step of
processor i.

since the keys 3 and 7 are mapped to the same bucket due to
identical hash values. Hence in the sample hash table, the
bucket with key value 3 at position 1 is linked to the next
bucket entry with index 3 to indicate that the next key of
this bucket is on position 3.

3.3.2 Histogram-based Hash Table
Our second hash join implementation relies on a pre-

ceding partitioning based on radix clustering proposed by
the authors in [24] and builds a histogram-based hash ta-
ble (Hist-HT) and a prefix sum similar to [7] with a re-
ordered relation R as presented in [19]. In contrast to our
first approach where the number of DRAM accesses are min-
imized, this hash join implementation requires known input
cardinalities before runtime as well as a second run over R.
Again, processor i receives all tuples of R from DRAM and
performs the following steps (cf. Figure 4):

(1) Hash R: Identical to step (1) of the LL-HT hash join
implementation.

(2) Determine histogram from R: Scan all hash val-
ues h(R) and select tuples Ri which belong to the as-
signed range of hash values hi−1 ≤ h(Ri) < hi to ob-
tain histogram i.

(3) Determine prefix sum from histogram: Iterate
over histogram i and obtain the prefix sum for Ri.

(4) Insert R to hash table: Again load R and obtain
the hash values similar to step (1). Insert tuples of Ri

which are in the specified range of hash values. The
position in the hash table is determined by the prefix
sum calculated for this tuple. All tuples which belong
to the same bucket are now successively stored in the
hash table. There are now p independent hash tables
for all p processors.

(5) Hash S: Iterate over S and calculate the hash val-
ues h(S) in the same manner as R in step (1).

(6) Join: Identical to step (4) of the LL-HT hash join im-
plementation.

As can be seen from the algorithm, R is loaded and hashed
twice from DRAM. However, due to the additional hashing
instructions, determining the hash values is expected to even
have the smallest impact on execution time. Additionally,
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Figure 4: Hash join with histogram-based hash table
(Hist-HT). The example below shows all steps from
hashing (1) to insert (4).

all tuples of one bucket in the hash table are successively
located in memory. In comparison to the hash table with
linked lists, we expect to obtain a faster join phase when
using the histogram-based hash table.

Figure 4 depicts an example hash table and the mapping
phase for one partition Ri of one processor. After hashing,
the histogram is obtained from the hash values, i.e., hash
value 4 appears once, 3 exists three times, etc. The prefix
sum determines the position of the keys in the hash table,
e.g., key value 12 is mapped to index 4 in the hash table
which is selected by the prefix sum at index 4. We again
assume that all hash values belong to the applicable range
for this partition i.

4. EXPERIMENTS
This section presents our experimental results. After in-

troducing the configured set-up, we show performance as
well as power measurements.

4.1 Configuration
We evaluate all hash join implementations explained in

Section 3.3 with the previously described Tomahawk4 plat-
form. The DBAs execute the actual algorithm and the CM
is responsible for data initialization in DRAM as well as
starting the cores. In the following, we again refer to the
hash joins as LL-HT and Hist-HT for the hash table built
with linked lists and the histogram, respectively. For com-
parison, we also execute both hash joins on the APP core.
In contrast to the DBAs, the code of the APP only omits
partitioning the input relations according to the hash values
due to a single-core execution. Moreover, the APP benefits
from a direct DRAM address mapping as well as a data and
an instruction cache of 16 kB each. Unless otherwise speci-
fied, APP, CM, and the DBAs run at 500 MHz with a supply
voltage of 1.05 V. For the DRAM, we measured a maximum
bandwidth of 12.5 Gbit/s. Our DRAM latency estimation
yields about 300 cycles when one single core reads 8 byte
without any further traffic on the NoC. This includes to
configure the DMA from software (260 cycles) plus 40 cycles
round-trip delay to cross the buffers between the modules
and the NoC as well as to pass the LPDDR2 interface.
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executed on four DBAs with different hash table
implementations.

For the DRAM accesses during the join step, we mitigate
the configuration delay by always loading a full NoC burst
of 512 bytes and apply software pipelining to reduce the im-
pact on NoC packet transfer time.

For the workload, we again use two input relations R
and S with |R| = |S| which consist of 64-bit key-payload
pairs (tuples). The tuples of both relations are unsorted
and stored in DRAM. The randomly generated 32-bit keys
of R follow an uniform distribution within the domain
0, ..., 232−1. To reduce the output cardinality from at most
|R| ∗ |S| to a predefined value, the keys of S are then chosen
from the same domain as R, but in a way that the values
with R overlap only by ¼.

We measure the execution time of the algorithms by cycle
counters which are integrated in each processing module and
the CM. Furthermore, we obtain the power consumption
from analog-to-digital converters [14] which monitor voltage
and current of the power supply rails.

4.2 Performance
In a first experiment, we run the algorithms on all four

DBAs by varying the input cardinality. We set the upper
limit to 100,000 tuples for each relation which is 50× what
fits into one local data memory of a DBA. Hence, we en-
sure that initialization overhead in the DBA’s software or
the communication of the DBAs with the CM can be ne-
glected. As depicted in Figure 5, we plot the number of
cycles per input tuple which are calculated by the execu-
tion time in cycles divided by the total number of input
tuples |R|+ |S|. The curves show a linear slope at an in-
creasing input cardinality. However, the hash join LL-HT

increases faster than Hist-HT. Near 100,000 tuples, Hist-HT
takes about 217 cycles/tuple which is around 30× better
than the LL-HT hash join. Additionally, the algorithms per-
form on average ca. 1.6× (LL-HT) and 3.2× (Hist-HT) faster
when using the instruction set extensions (ISE). We also
plot the performance of the APP core for both hash joins
as reference. It follows the same behavior and is on average
1.9× to 5.0× slower than the 4-core LL-HT and Hist-HT hash
join, respectively.

To understand the difference of both algorithms, we run
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Figure 6: Cycles per tuple of hash join steps with
histogram-based hash table (Hist-HT) for different
number of cores (|R| = |S| = 100,000 tuple).

the hash join with the histogram-based hash table for a dif-
ferent number of cores and plot the number of cycles to
process one tuple for the different hash join steps (see Fig-
ure 6). Note that the number of cycles for the hashing step
includes hashing of all keys of both input relations and stays
constant for different number of DBAs since every DBA
hashes all tuples of R and S. Consequently for Figure 6,
the histogram+prefix sum and the fill step can be assigned
to the build phase while the join step represents the probe
phase. Hence, when using the additional hashing instruc-
tions, we obtain on average a 3.8× and 1.6× performance
improvement for the build phase and the probe phase, re-
spectively. While the build phase only writes to DRAM, the
probe phase needs to read tuples from the hash table. Due
to high-latency DRAM reads, joining always takes at least
70% of the total execution time. The same applies for the
APP core as can be seen in Figure 6.

The Hist-HT hash join stores all entries of a bucket suc-
cessively in memory. Hence for each tuple in S, on average
only one DRAM access at one single address is necessary.
This even applies for a high number of collisions in the hash
table. In contrast, bucket entries of the LL-HT hash join are
scattered over the complete hash table. Assume that c col-
lisions occur, also c accesses on different DRAM addresses
are required, i.e., configuring the DMA controllers c times
which finally results in an overall higher join time. We omit
to plot Figure 6 again for the LL-HT hash join since the join
step takes always more than 97% of the total execution time.

In conclusion, despite that the Hist-HT hash join runs
through R twice, it has an performance advantage over
the LL-HT since the probe phase dominates the total
execution time. As mentioned earlier, configuring the DMA
from the PM’s software causes the major part of the DRAM
read delay. Modifying the clock buffers between the NoC
and the PMs to provide reduced round-trip delays would
further improve the performance. We leave this idea open
for future work.

We now want to study the particular performance im-
provements enabled by the instruction set extensions and
multi-core processing. Figure 7 depicts the speedup for
the Hist-HT hash join under different configurations. Ev-
ery curve is related to the single-core execution of one DBA
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Figure 7: Performance improvements related to sin-
gle DBA without using instruction set extensions for
hash join with histogram-based hash table (Hist-HT).

without the usage of additional hashing instructions. We
focus on smaller cardinalities to elaborate ranges where the
input data size starts to exceed the size of the local mem-
ories and the cache, respectively. For the DBA, the data
arrays in the local memory contain at maximum 4096 tu-
ples. As explained in Section 3.3, one half is used to load
data from DRAM while the DBA processes on the other
part. As can be derived from Figure 6, the build phase
takes at least 50 cycles/tuple. Knowing that the DRAM de-
livers 2.5 cycles/tuple and the NoC achieves 1 cycle/tuple,
we conclude that the hash join is limited by the processing
speed of the DBAs.

Furthermore, the results reveal the following statements:
• The performance advantage of the instruction set ex-

tensions decreases with higher cardinalities since join-
ing dominates the total time as figured out previously.
• In comparison to the single-core execution, four cores

increase the speedup. This shows that the system
scales well with the number of cores as long as it is
not memory I/O bound.
• When combining the benefits from the instruction

set extensions and the parallelism on core-level, the
speedup approaches a factor of 4 for input cardinali-
ties above 20,000.
• The APP core follows a steadily increasing speedup

until the input cardinality reaches the cache size
of 16 kB. Hence at 2000 8-byte tuples, cache misses
incur and the DRAM latency slows down the perfor-
mance.

We do not explicitly report on the analysis for the LL-HT

hash join since the behavior of these speedups are very sim-
ilar to the Hist-HT implementation.

4.3 Power
We measure the power consumption of the Tomahawk4

MPSoC for both hash join realizations as well as with and
without instruction set extensions. For that purpose, we run
the algorithms in an infinite loop to monitor the power val-
ues. As a result, we found no significant difference between
the implementations. Hence, we omit to distinguish between
different implementations and decide to present all results
only for the Hist-HT hash join which uses the additional
hashing instructions.

Table 1 shows the total power consumption for different

Number of DBAs
PM Configuration 1 4 3 4

100 MHz, 0.90 V 60.3 70.7 78.0 82.7
200 MHz, 0.95 V 69.1 83.5 95.6 95.6
400 MHz, 1.00 V 88.6 105.8 123.0 133.1
500 MHz, 1.05 V 100.8 134.4 161.7 191.7

Table 1: Measured power consumption (in mW)
of Hist-HT hash join at different frequencies and volt-
ages. The power includes the PMs (DBA, DMA,
local memory), CM, and the NoC.
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Figure 8: Energy consumption per tuple of Hist-HT

hash join at different frequencies and voltages.

clock frequencies and supply voltages. Note that only the
PMs are affected when frequencies and voltages change. The
CM and the NoC still run at 500 MHz and 1.05 V and always
consume about 51 mW. The algorithms achieve the highest
throughput at the maximum clock speed of 500 MHz. In
this case, the MPSoC including four PMs, the CM, and the
NoC consume 191.7 mW. We further state that, e.g., for
the 100 MHz configuration, the total power only increases
by factor 1.4 when using four DBAs instead of one.

We select different clock frequencies and supply voltages
to analyze the trade-off between power consumption and
throughput. For this purpose, a suitable measure is the
energy consumption which is calculated by dividing the dis-
sipated power by the cycles spent to process one tuple. Fig-
ure 8 depicts the energy per tuple for a different number
of cores when running the hash join with 100,000 tuples
for each input relation. The overall lowest energy is re-
quired when four DBAs are used. Compared to the single-
core execution, the performance improves by more than fac-
tor 4 (cf. Figure 7), but the power consumption only in-
creases by factor 1.9 for the 500 MHz case. However, we
found that the lowest possible energy consumption occurs
with 72 nJ/tuple for four DBAs at the 400 MHz configura-
tion. In this case, the trade-off between power and through-
put is optimal. We conclude that the MPSoC achieves the
highest energy-efficiency when using multiple cores which
run at slightly reduced frequencies.

5. CONCLUSION
In this paper, we studied the implementation of hash join

algorithms on the Tomahawk4 MPSoC. The chip integrates
four database-specific accelerator cores each equipped with
128 kB of tightly-coupled SRAM. The cores are built upon
an ASIP approach and support instructions to speedup an



integer hash function. An off-chip DRAM serves as a main
memory and is shared by the database accelerators.

The results reveal that state-of-the-art hash join algo-
rithms are well suited to be applied to MPSoC architec-
tures. In particular, we found that partitioning the input
data is essential to exploit the system parallelism. Further-
more, the size of the input relations and the hash table re-
quires to include main memory accesses during execution.
However, in order to hide the DRAM read latency, memory
accesses should occur from subsequent addresses. By apply-
ing this approach to the hash table design, we obtain an up
to 30× performance advantage. Moreover, the results pro-
vide the basis to establish low-power MPSoCs in database
system which, e.g., may act as coprocessors next to high-
performance CPUs to offload and accelerate basic database
operations such as hash joins.
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