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ABSTRACT
For stream processing application domains, using queries
to process or analyze data incoming from potentially end-
less streams, low latency and high throughput are key re-
quirements. It is not easy to achieve this as many factors
influence the actual runtime of query execution plans and
one can not measure all of them individually. Therefore,
query optimizers try to overcome this hurdle by using cost
models for decision making. Modern hardware architectures
and devices, like manycore CPUs or the NVRAM storage
technology demonstrate new properties for query execution,
which have not received much attention within the model.
Thus, traditional optimizers are not capable of dealing with
these new factors leading to results possibly far away from
optimum.

Our work addresses this problem providing a new cost
model based on modern hardware characteristics. We ana-
lyze hardware aspects necessary for query optimization and
substantiate them with our own low-latency stream process-
ing engine PipeFabric. This yields in a cost model that can
precisely predict the performance of query execution plans
on modern hardware close to actual measurements.

Keywords
Cost Model, Xeon Phi, KNL, MIC, NVRAM, Stream Pro-
cessing

1. INTRODUCTION
Nowadays, many applications in different domains ranging

from monitoring cyber-physical systems over IoT to finance
and healthcare require the processing of data streams often
with low latency. This is typically addressed by stream pro-
cessing engines (SPE) pioneered by systems like STREAM [2],
Aurora [1] or TelegraphCQ [14] and today by massively par-
allel engines such as Apache Storm [16] or Flink [4]. Apart
from efficient algorithms for – possibly incremental – pro-
cessing and implementation techniques, query planning and
optimization play an important role.
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Achieving low latency requires utilizing the available hard-
ware in the most efficient way. Examples are manycore ar-
chitectures such as Intel’s Xeon Phi series allowing a high de-
gree of parallelism, co-processors such as FPGAs and GPUs
for offloading compute-intensive tasks but requiring data
transfer between host and co-processor, SIMD instruction
sets such as AVX512 for efficient processing of small batches
of data, cache-optimized implementations utilizing processor
caches or high-speed networking supporting new communi-
cation models such as RDMA. However, such aspects are
taken into account to a very limited extent in current cost
models for stream processing preventing query optimizers
to explore the plan space also in terms of hardware param-
eters, e.g. the number of threads (determining for example
the number of partitions) used for a given query, vectoriza-
tion of processing as trade-off with latency, using different
storage layers (memory technologies) for managing the state
of operators and much more. Another open question is the
required level of detail of such a cost model to allow to choose
the optimal plan for different hardware parameters.

Thus, the goal of our work is to empower query optimizers
for stream engines to take hardware features into account
by proposing a hardware-oriented cost model. Particularly,
we consider manycore architectures exemplified by Intel’s
Knights Landing (KNL) architecture and the problems of
stream partitioning/degree of parallelism as well as operator
state management with different memory technologies. Our
contribution is twofold:

• We present a cost model for parallel stream processing
based on the idea of a rate-based model that specifi-
cally considers hardware properties of a manycore pro-
cessor architecture with different memory types.

• We report results of an experimental evaluation show-
ing the viability of the proposed model.

2. RELATED WORK
For optimizing queries, [11] shows that todays optimizers

are often very complex without providing much better re-
sults than simpler approaches. Large estimation errors occur
frequently, leading to bad execution plans even on relational
databases without streaming purposes. Machine learning
techniques are stated as modern solutions, outstripping tra-
ditional cost model practices. However, [6] challenges this
statement, showing that a well calibrated optimizer using a
cost model delivers excellent results.

For hardware-oriented cost models, [13] provides deep in-
sights on hardware factors used in database queries. They



analyze the performance of queries with the help of a cost
model for algorithms used by database operators as well as
the influence of hardware properties, especially CPU and
memory costs. Nevertheless, stream processing has its own
features (further explained in Section 3) where cost models
of traditional relational databases are not applicable.

In [9] they address these stream processing characteristics
for query optimization. They cover the entire range from
streaming properties to query execution, providing usable
cost models for the optimizer considering various operations
and additionally describing how to dynamically integrate op-
timized plans into already running database systems. While
they are a solid base, for streaming applications running on
modern hardware they are too inaccurate, lacking partition-
ing strategies for better query performance among others.

The partitioning aspect is explicitly addressed by [12] on
intra-query parallelism. When applying multithreading with
partitioning, it is necessary to decide where partitioning can
provide performance improvements. They use heuristics on
selectivity and costs of operators as well as on table size and
query plan structure. Concerning stateful stream process-
ing, [5] has examined various partitioning functions in great
detail.

To bridge to specific hardware, there is already work done
on co-processors like GPUs from [3] or [7]. The main focus
on work with co-processors lies on overcoming the bottleneck
of data transfer between host and GPU, which also applies
for the predecessor of the KNL manycore CPU, the Xeon
Phi Knights Corner.

3. DATA STREAM PROCESSING
Many modern applications require stream processing since

the data would be too huge to store or is only valid within a
specific time frame. The data typically arrives continuously
represented by tuples, possibly endless and with fluctuat-
ing rates. To deal with scopes or dependencies among the
tuples, window semantics are usually provided.

Handling high data rates to achieve the often purposed
real-time characteristics requires a partitioning of streams
and states as well as the parallelization of the query opera-
tors. The remainder of this section, therefore, describes our
own SPE PipeFabric1 and how parallelism and partitioning
are realized inside. In addition, we also consider stateful
operators for the cost model, where it is necessary to access
(possibly persistent) external storage regions.

3.1 Stream Processing Engine (SPE)
In an SPE queries are often represented and internally

organized as dataflow graphs or pipelines. Compared with
traditional engines such as STREAM [2] and Aurora [1],
modern SPEs do not provide declarative languages like CQL
but language integrated APIs or domain-specific languages
(DSLs). This makes it possible to express more complex
queries, which can easily support application-specific func-
tionalities in the form of user-defined functions through the
underlying programming language.

With our internal SPE PipeFabric written in C++, queries
can also be formulated using a DSL by putting together se-
quences of operators to construct a dataflow. Besides vari-
ous standard operators such as projection, filter, join, and

1
https://github.com/dbis-ilm/pipefabric

aggregate, it also supports complex event processing and ta-
bles to combine the worlds of stream and batch processing.

3.2 Parallelism
There are basically two strategies to parallelize queries,

namely inter- and intra-operator parallelism. Inter-operator
parallelism can be achieved by separating the dataflow into
multiple parts which can run in parallel on different threads.
For intra-operator parallelism, multiple instances of an op-
erator are created to partition the load.

In PipeFabric both forms of parallelism are realized, shown
in Figure 1. With synchronized queues for tuple exchange
between operators, parts of the query can be decoupled
and run simultaneously with multiple threads, providing
inter-operator parallelism. Intra-operator parallelism uses
a partition-merge schema. Here, each partition is decoupled
in its own thread executing a specific operator (sequence).
Additionally, a partitioning operator is preceded that takes
care of splitting the incoming stream and forwards the tuples
to the matching partition. At the end, a merging operator
is responsible for combining the results of all instances into
a single stream again.

Figure 1: Multithreading in a Query
(1) Singlethreaded execution

(2) Multithreading between operators
(3) Partitioning-Merge schema

However, utilizing parallelism does not always lead to bet-
ter performance. The partition and merge step as well as
synchronization efforts for exchanging tuples between threads
are causing a notable overhead. A singlethreaded operator,
on the other hand, can only process a limited number of tu-
ples in a certain time frame. Thus, it is a tradeoff where an
optimizer has to decide when it is useful to parallelize using
a well-defined cost model.

3.3 Stateful Operations
Some streaming operators require to hold and access stored

items such as metadata, history data, intermediate results,
etc. Typical operations are for example windows, aggrega-
tions, and joins. We subsume this kind of operators as state-
ful operations. In contrast to stateless operations, which
can process each tuple individually and independent of pre-
vious tuples or other data items, stateful operations require
additional accesses to memory and storage. Considering a
singlethreaded streaming application, especially the access
granularity (byte or block) and the read-write ratio of an
algorithm is determined by the used hardware. That is, de-
pending on the hardware one might choose an algorithm us-
ing more intermediate writes or less writes with more reads

https://github.com/dbis-ilm/pipefabric


and recomputations instead (cf. Section 4). When utiliz-
ing parallelism for stateful operations these considerations
are getting more complex. One has to take partitioning,
distribution, synchronization, and others into account and
pick the correct strategies to satisfy the characteristics of
the underlying medium. In a cost model preferably all run-
time components of reading/writing to the storage should be
considered such as indexing, concurrent access, CPU caches,
OS cache, etc.

3.4 Query Optimization
Basically, query optimization in database systems is a

well-studied problem and a variety of methods and tech-
niques have been proposed to support cost-based decisions
about operator ordering and algorithm selection, but also
for scheduling strategies at runtime. For the specific case
of stream processing dedicated cost models are required dif-
fering from standard database cost models because the un-
derlying idea of cardinality estimation does not make much
sense for the processing of possibly infinite streams. One ex-
ample of an appropriate cost model is the rate-based model
from Viglas and Naughton [17] which uses operator input
and output rates instead of cardinalities. Since a stream
is running potentially endless and a query can produce re-
sults with fluctuating rates, an optimizer has to check if the
query still runs in the most effective way or may need to
be dynamically adapted. To point an example, if some keys
of incoming tuples appear more and more frequently and
the query executes a hash join on each of them based on a
huge internal hash table, it would be a good idea to pull the
frequently requested hash partner into the cache. However,
such a full optimizer is out of the scope of this paper and
will be further investigated in later work.

Because an optimizer needs a cost model to base its de-
cisions on, we want to provide such a model for modern
hardware usage, especially focusing on multithreaded query
execution and special memory systems.

4. HARDWARE PROPERTIES
Modern hardware is a wide topic. Within the scope of

this work, we focus on CPUs and memory, because they
determine most of the performance and query costs. In spe-
cific manycore processors and NVRAM have been examined
more deeply and are briefly introduced here.

4.1 Manycore Architecture
A manycore processor uses much more cores than a con-

ventional multicore CPU, leading to its name. While Nvidia
focuses on GPU technology, Intel switches to general many-
core architectures with the Xeon Phi series. The latest CPU
in this series, the KNL, has up to 72 cores. Each of the cores
supports four threads, available through Intel’s hyperthread-
ing technology. This leads to a massive degree of possible
parallelism. However, so many cores on a small chip create
an intense waste heat that has to be dissipated. This prob-
lem is solved by simpler cores and a lower clock speed – each
core of the KNL utilizes only up to 1.50 GHz. The result
of this low clock speed is a significantly poorer performance
when running an application singlethreaded.

To overcome this problem, the KNL provides in addition
to its parallelism the next level of instruction sets, called
AVX512. With this set, the register width is doubled, allow-
ing a better SIMD speedup than traditional CPUs. Another

improvement is the multi-channeled DRAM on chip (MC-
DRAM) with up to 16GB size and a supported bandwidth
of around 320GB/s. With many threads running in paral-
lel, the MCDRAM allows them to fetch data from memory
without overburdening the memory controllers, leading to
generally the same latency even with lots of memory re-
quests.

The most promising aspect of a manycore architecture is
the possible parallelization degree. In the scope of this pa-
per, our model, therefore, focuses initially on exploiting that
parallelization with multithreading, especially partitioning
and decoupling operators.

4.2 Non-Volatile RAM
The traditional way of storing data has always dealt with

the performance gap between DRAM and disk. To access
and recover the data even after a power loss, it is nec-
essary to write the data to a persistent medium. These
devices, however, are typically only block-addressable and
work faster with sequential access. In contrast, DRAM can
be accessed randomly with byte granularity, but the data is
volatile.

With NVRAM one tries to merge both technologies and
their advantages into one device. The most promising rep-
resentatives are phase-change memory (PCM) [10], SST-
MRAM [8] and memristors [15]. They provide fast read-
write latencies and byte-addressability similar to DRAM.
NVRAM also adds direct persistence and small memory cell
density like SSDs or HDDs allowing for higher capacities.
However, there are also undesirable aspects like the read-
write asymmetry and limited cell endurance in some tech-
nologies (e.g. PCM). For the optimizer, this means that
besides the latency considerations for the cost model, also
the algorithms must be chosen with regard to these charac-
teristics.

5. COST MODEL
An optimizer improves the execution of a query for lower

latency or more throughput. While latency describes (ap-
proximately) how long it takes for a tuple to be fully pro-
cessed by a query, increasing throughput allows more tuples
to be processed in a certain time frame. For real-time criti-
cal applications, it is necessary to produce a result as fast as
possible, a property that manycore processors do not fulfill
compared to multicore CPUs, caused by lower clock speed
resulting in poor singlethreaded overall performance. How-
ever, throughput can theoretically be increased by a tremen-
dous amount when utilizing as many cores as possible.

With multithreading in mind, the cost model is explained
later in this section. First, relevant factors of hardware are
mentioned. Next, requirements on stream processing are
discussed. Finally, they are combined along with further
explanations.

5.1 Hardware Factors
Hardware properties strongly influence optimization goals

and performance gains. To point an example, the KNL 7210
supports up to 256 threads with only 1.30 GHz clock fre-
quency per core. For comparable throughput with equal
tuple arrival rates from source, it has to use more threads
sooner (in terms of operator complexity) as a multicore CPU
with high clock frequency.



Measurements on hardware are tricky, though. Modern
processors use lots of techniques for hiding latencies and
memory accesses to massively increase performance. This
makes it difficult to get reliable measurements without influ-
ence from other sides. The hardware prefetch mechanism,
for example, is one of those techniques, pulling data from
memory into caches in advance, concealing real memory ac-
cess times.

Relevant hardware factors can be split into three main
categories, CPU, main memory and caches, as shown below.
State-related factors and costs are regarded separately later.

CPU. For CPU, we regard two main factors for perfor-
mance. The clock frequency determines how fast any
instruction is executed. A lower clock speed means that
it takes more time for a processor until each instruction is
performed, worsening latency in general. The number of
supported threads derives the possible effective degree of
parallelization with multithreading.

Main Memory. On main memory, its size is responsible
for the amount of data that can be used before accessing the
disk. Today, main memory is not very expensive anymore,
allowing sizes of hundreds of Gigabytes easily. The latency
of main memory access determines how fast data can be
pulled into caches to make it ready for processing by the
CPU.

Caches. Caches speed up runtime of applications by pro-
viding extremely fast data access when the requested data
is already present in a cache. It is always a tradeoff be-
tween the size of a cache and the latency of accessing el-
ements inside. So most of the time each core has its own
small cache with extremely low latency for data (L1d) and
instructions (L1i) as well as shared lower level caches be-
tween cores that are bigger with higher latencies (L2, L3).
Relevant factors for a cost model are how many caches a
system has, with certain attributes on each cache. The size
of the cache along with its line size determines how many
elements it can effectively hold. The latency of cache ac-
cess can be fine-grained by distinguishing between hits and
misses, on sequential or random access. We use the general
hit latencies in our case.

Table 1 summarizes the relevant hardware factors dis-
cussed above.

Hardware Factor Symbol

clock frequency fclock
number of threads numthread

main memory size memsize

memory access latency memlat

size of cache j Ljsize
hit latency of cache j Ljlat

Table 1: Relevant Hardware Factors

5.2 Stream Processing Model
An SPE supports different operators that can be applied

combined in a query on a data stream. How these opera-
tors are implemented differs in each engine. For example,
a join between two streams can be performed by a hash or

a sort-merge join, each with different costs of memory us-
age, CPU processing time and cache reuse. Our focus in
this work is on the multithreading aspect with its impact on
performance based on underlying hardware. However, up
to a certain degree, a fine-grained consideration of operator
costs is necessary.

The cost of a query represents the amount of work done
before it returns a result. For stream processing purposes,
our goal is to minimize the approximated latency per tuple
lat(tp). A better throughput results into more processed
tuples per time frame, what can also be expressed in lat(tp)
by lower processing time per tuple. The overall formula is
given in Equation 1, where cq denotes cost of a query and
tpproc is the number of processed tuples in a certain time
frame.

lat(tp) =
cq

tpproc
(1)

The singlethreaded query costs cqs simply consist out of
the sum over all operators it uses including their selectivities.
When a tuple arrives from source, n operators are applied se-
quentially on that tuple when running singlethreaded. Each
operator modifies it potentially and forwards it to its succes-
sor. On singlethreaded execution, the transfer costs between
operators are negligible and therefore not of further interest
in the equation. However, the efforts of an operator mainly
depend on how many tuples it has to process, denoted with
the parameter tpin. This is expressed in Equation 2.

cqs =

n∑
i=1

(cop(i) · tpin) (2)

The usage of multiple threads on a single query can be
realized in two ways, according to subsection 3.2. First, we
show the costs for a query with inter-operator parallelism
(see Equation 3).

cqm = max(

k∑
i=1

(cop(i) · tpin),

n∑
i=k+1

(cop(i) · tpin))

+cqueue · tpin

(3)

The cqueue costs describe the delay for exchanging tuples
between the threads. It depends on the synchronization
mechanism that is used by the SPE, e.g. locks or times-
tamps. Because of simultaneous execution of threads, the
slower thread determines overall costs in addition to syn-
chronization efforts, expressed by the maximum in the for-
mula. k + 1 is the position after which the second thread
takes over.

Next, we list the costs for a query with partitioning-merge
schema (shown in Equation 4).

cq multi = max(

k−1∑
i=1

(cop(i) · tpin) + cpart · tpin,

(cqueue + cop(k)) · tpin,

(cqueue + cmerge) · tpin +

n∑
i=k+1

(cop(i) · tpin))

(4)

The outer maximum determines overall costs by three
components. The first component is the thread running all



preceding operators plus the partitioner. The second one
is the partitioned operator, multiplied with incoming tu-
ples. The last component is the thread running the merge
step with all following operators. With more partitions, less
tuples need to be processed by each of them. But if the bot-
tleneck is on the first or the third component, performance
is not improved by adding more partitions.

5.3 Stateful Operations
As described earlier, we also pursue to integrate the stor-

age part of the hardware in our cost model as it is crucial
in particular for stateful operations. For that, it mainly de-
pends on the type of device holding the state such as mag-
netic disks, SSDs, NVRAM, or volatile memory only. Even
for NVRAM, it can make a big difference which technology
is used, i.e. PCM, SST-MRAM, memristor, or whatever
may come in the future.

In itself insignificant for the cost model but important for
the algorithm is the access mechanism. Hence, one has to
use the correct interfaces such as filesystems, allocators, or
direct access to store and retrieve the data correctly. The
relevant part for our cost model is then the resulting la-
tency for accessing the state. Thereby, it is necessary to
distinguish between read and write latency (denoted Sr lat

and Sw lat) due to the read-write asymmetry for most of the
storage technologies. In addition to the advertised perfor-
mance characteristics of the single device, it is important
to measure the real values within the used system by small
experiments or benchmarks inspired by the intended work-
load. These values can greatly differ through various caching
mechanisms, NUMA effects, hardware combinations etc.

On top of that, one also has to take logical costs into ac-
count similar to Manegold [13]. Typical factors here are the
data volume and the selectivity of the state predicate. In
this scenario, the average number of read and write opera-
tions per tuple seems to be the factor of interest, which can
often be derived from the data cardinality and the type of
state. For example, using partitioned hash-join with a static
data set should only require one lookup in the state per tuple
(possibly cached for each partition). Considering a grouping
or grouped aggregation may require at least one write and
multiple read operations depending on the size and organi-
zation of the state. Thus, the number of reads and writes is
mainly determined by the operator and shape of the state.
First experiments have shown us that simply estimating the
number of reads and writes does not give the correct cost
due to various caching and optimization effects. That is why
an operator-dependent state manipulation factor for reading
and writing (denoted f<op> Sr and f<op> Sw) needs to be
calibrated. When dealing with custom states behaving like
a black box, things get more complicated and one has to fall
back on heuristics, statistics, or annotations.

Combining the logical and physical costs one can derive
the total estimated execution time. This results in Equa-
tion 5 describing the access costs for a partitioned stateful
operator per tuple.

cS <op> = Sr lat · f<op> Sr + Sw lat · f<op> Sw (5)

Another important factor is also whether a page cache by
the operating system is interposed or the quite new DAX
code is enabled to provide direct access to byte-addressable
devices. In this way, unnecessary copies within the main

memory will be avoided. If the medium is exclusively block-
addressable it is important, on the one hand, to keep cohe-
sive state data on the same block to reduce the number of
external operations. On the other hand, for the optimizer,
this could mean that partitions should be created block-
based instead of tuple-based. Hence, one can drive various
state partitioning strategies depending on the underlying
medium. For the cost model, we need strategy dependent
factors similar to the operator costs resulting in Equation 5
using these factors instead (denoted cS part). As expressed
by the formulas earlier, partitioning is worthwhile only if
the synchronization effort for partitioning and merging the
state plus the longest running thread is smaller than for a
singlethreaded execution. It is expedient to organize the
state in a way enabling a disjunctive division of the data
to avoid merge synchronization and general communication
overhead among the threads. For fixed length entries in
such states, this is quite easy to achieve but may increase
the lookup time for big states.

Another strategy, especially for smaller states, is to parti-
tion only the incoming tuples and not the state. This state-
sharing technique would additionally require a measure for
the synchronization overhead, which would further enhance
the formula.

Besides the performance considerations, an optimizer and
its cost model should also try to optimally utilize the specific
characteristics of the hardware class or deal with its draw-
backs. In the case of NVRAM, the read-write asymmetry
and lower cell durability in comparison to DRAM require
that optimizers use write-limited plans if possible. For block
devices it is especially important to strive for sequential in-
stead of random access to avoid additional seek times (e.g.
arm movement) or block accesses. It is quickly clear that
a lot of factors come into play depending on the hardware
and also the type of the state. For the sake of simplicity, we
stay with Equation 5 for the time being in this paper.

5.4 Hardware-Conscious Cost Model
In this section, we combine our hardware facts with the

stream processing formulas, regarding operator costs cop.
These costs depend on optimization degree of the compiler,
algorithm costs, implementation details and much more,
which are out of the scope of this paper, simply noted as
ccpu costs in the following formulas.

Projection. The projection is an unary operation which re-
stricts incoming tuples to certain attributes. In our current
implementation, it gets a pointer on a tuple per subscription
from the preceding operator or generator. For the projec-
tion function, it has to access the data behind the pointer,
which should be cached ideally. However, its result has to
be written again in main memory. Equation 6 shows the
notation.

cproj = L1lat + memlat +
ccpu
fclock

(6)

Selection. The selection operator drops tuples that do not
fulfill a predicate. Therefore, it reads the necessary at-
tributes from incoming tuples (from cache), evaluating the
predicate and publishing the tuple for the next operator if
the evaluation is true. No main memory is involved here, so
this operator is very fast. Equation 7 shows the costs.



csel = L1lat +
ccpu
fclock

(7)

Aggregation. The aggregation operator applies a stateful
aggregate on each incoming tuple. It has to access and up-
date its state, reading from the cache and writing it to main
memory as well as accessing the necessary attributes for ag-
gregation, ideally cached also. The costs can be written as
in Equation 8.

caggr = 2 · L1lat + memlat +
ccpu + cS aggr

fclock
(8)

Grouping. The grouping operator applies an aggregate on
each tuple with respect to a key column. Thus, the operator
is a bit slower than the aggregation explained before. Costs
are listed in Equation 9.

cgrp = 2 · L1lat + memlat +
ccpu + ckey + cS grp

fclock
(9)

Queue. The queue is used for multithreading and allows tu-
ples to be exchanged between threads. According to its syn-
chronization mechanism, it can possibly add high latencies.
The queue is coupled to another operator, for example, the
projection operator. In our current realization, the queue
writes the tuple that has to be exchanged into memory, ex-
pressed by memlat. Therefore, it acquires a lock, releasing it
thereafter with notification of the other thread. This shows
csync. Equation 10 shows the costs of the queuing mecha-
nism.

cqueue = memlat +
csync + ccpu

fclock
(10)

Partitioning and Merge. The two operators are used for
intra-operator parallelism. The partitioner evaluates a pred-
icate deciding which partition is responsible for the currently
processed tuple. It then forwards the tuple into a queue ac-
cording to the appropriate partition. The merger uses its
own queue where results of the partitions are stored before
it publishes them in a single stream downwards. It can be
expressed like in Equation 11 and Equation 12. For the par-
titioning step, the arriving tuple is ideally already in the
cache from the previous operator. The queuing costs are
simply added and ccpu describes the predicate evaluation
costs. In the case of merging the ccpu costs are only for pub-
lishing the tuples from the input queue, resulting in a single
stream.

cpart = L1lat + cqueue +
ccpu
fclock

(11)

cmerge = cqueue +
ccpu
fclock

(12)

To combine the partitioning and merge cost model (see
Equation 4) with stateful operation costs (see Equation 5),
we derived Equation 13 as a total cost formula for a mul-
tithreaded stateful query. The costs for accessing the state

are considered for both the partitioning strategy and the
partitioned operators. Costs for manipulating the state oc-
cur for every incoming tuple. Partitioning the state, on the
contrary, is only necessary once in the beginning and in the
case of dynamic repartitioning. The merger only retrieves
the results, e.g. an aggregation, and thus do not have to
manipulate the state itself.

cq mS = max(

k−1∑
i=1

(cop(i) · tpin) + cpart · tpin + cS part,

(cqueue + cS op(k) + cop(k)) · tpin,

(cqueue + cmerge) · tpin +

n∑
i=k+1

(cop(i) · tpin))

(13)

With this cost model in mind, we put our considerations
to the proof in the following section.

6. EXPERIMENTS
Within this section, we intend to show with various ex-

periments how greatly hardware factors and partitioning in-
fluence latencies of any operator to verify our cost model.
For that, we use the Intel Xeon Phi Knights Landing 7210
manycore processor, supporting 64 cores, 256 threads with
a clock frequency of 1.30GHz per core. After describing
first hardware-related calibrations, we demonstrate general
behavior on multithreading with decoupling of operators
and partitioning. Subsequently, the tuple processing rate
from implemented operators is shown. Finally, we compare
these results with our cost model by running some example
queries, measuring real latencies in comparison to the cost
model outcome.

6.1 Hardware Calibration
Hardware factors are measured by our calibration tool,

written in C++. Memory and cache sizes can be read from
Linux sysinfo because the KNL runs on Linux operating
system. The number of supported threads is simply revealed
through the C++ thread class from the standard library.
Measuring the latencies is more tricky, though. For main
memory latency, an object is written to memory repeatedly
for a million iterations. When measuring cache latencies,
the prefetching mechanism needs to be disabled or bypassed
first. This is granted by random access on elements of an
array. That leads to unpredictable accesses and denies any
latency hiding from the prefetcher. For each cache, we use an
array that fits into that cache, but is too huge for previous
smaller caches, leading to consequent cache misses there.
Results are shown in Table 2.

The KNL has no L3 cache, however, the MCDRAM can
be used as a last-level cache when configured in cache mode.
This is done here, even when its latency is worse than on
main memory. Because we measured latencies with a sin-
gle thread, the main advantage of the MCDRAM (its high
bandwidth) is not relevant here, easily explained through
the fact that a single thread cannot even saturate that max-
imum possible bandwidth (around 320GB/s).

6.2 Multithreading Behaviour
To get a better picture of how partitioning influences la-

tency in our SPE PipeFabric, we run a single mathematical
operator in a query with increasing complexity. It only adds



tuple data on a single variable with certain repetitions. In
real queries and operators, this complexity can be expressed
by the number of operators a query uses as well as simply
the CPU processing time for each of them. With increased
complexity, the advantage of partitioning can be seen in Fig-
ure 2.
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Figure 2: Partitioning Results

For low complexity, the synchronization overhead between
partitions worsens approximated latency for each tuple. How-
ever, when CPU time increases, a notable speedup is achieved.

For decoupling operators into two threads, it is necessary
to use it between two operators that benefit from simulta-
neous execution. If one operator is magnitudes slower than
the other, it will just dominate the latency. Therefore we
run the mathematical operator twice in the query, each of
them in a single thread with synchronized data exchange.
Results are shown in Figure 3.

With two threads in parallel, the approximated latency
per tuple is finally close to a half compared to singlethreaded
execution. For low complexities, however, the constant over-
head by synchronization just worsens latency, same like on
partitioning.

That means, a query optimizer regarding multithreading
has to decide on a given query where it is most beneficial to
add partitioning or decoupling, if at all.

6.3 Operator Measurements

Hardware Factor KNL 7210

clock frequency 1.30 GHz
number of threads 256
main memory size 96GB

memory access latency 146.3ns

size of cache L1 32kB
size of cache L2 1MB
size of cache L3 16GB*

L1 access latency 3.1ns
L2 access latency 13.2ns
L3 access latency 172.7ns

Table 2: Measured Hardware Factors
*MCDRAM runs in cache mode
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Figure 3: Decoupling Results

As already explained in detail in Section 5, we show the
average latency each operator needs to fully process a tuple.
We provide data through our generator, creating a million
tuples sequentially with three attributes each, an integer, a
double and a string. The integer is repeatedly counted up
from zero to 10000, the double value is increased continu-
ously beginning with 1.5 and the string contains six chars.
After measuring its necessary runtime, we can run a query
with each operator alone subtracting the generator time as
constant. The projection operator reduces the attributes of
incoming tuples to the integer value only. The selection op-
erator has a selectivity of 20%, forwarding only one of five
tuples. For aggregation, the operator sums up the double
values from the tuples using an internal state. The grouping
operator does the same with respect to the key of a tuple,
represented by the integer value. Results are shown in Ta-
ble 3.

Operation Latency Costs

Projection cproj 340ns
Selection csel 112ns

Aggregation caggr 552ns
Grouping cgrp 700ns
Queue cqueue 2650ns

Table 3: Measured Operations [Latency per Tuple]

With these measurements, we can split any costs into a
memory access part and CPU processing part, according to
our equations in Section 5.

6.4 Query Results
We use the following two queries for comparison between

measured results and cost model outcomes:

• Q1: Selection (20% selectivity), Projection (integer
and double attribute), Aggregate (double attribute)

• Q2: Projection (integer and double attribute), Group-
ing (double attribute)

For each query, it is run with a single thread (noted with Q
s.), with decoupling by a queue (Q d.) and with partitioning



(Q p., two partitions). In addition, we use our cost model
for an estimation, shown in Figure 4.
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Figure 4: Query Results

As it can be seen, the cost model closely predicts the re-
sults measured directly when running a query.

We explain the numbers exemplarily for the first query,
using the decoupling by a queue. On the top level, the costs
of the query according to Equation 3 are the maximum of
both threads plus the queue overhead. The first thread runs
the selection, while the second thread runs the projection
and aggregation. It can easily be seen that the maximum
of both threads is the second one. Because of the selection
operator returning just a fifth of tuples, the maximum is
expressed as the sum of projection (Equation 6), aggregation
(Equation 8) and queue (Equation 10) per tuple.

Relevant hardware factors like the clock frequency and
cache and main memory access latencies are measured by
our calibration step described above. The real CPU costs of
an operator are tested outside of our PipeFabric framework
with C++ tests written by oneself.

If we add all together, our cost model returns an approx-
imated latency of 713ns per tuple, compared to real-time
measurements on the first query that gives us 722ns.

Our model can be extended in future work for more ex-
act results and better predictability on different hardware
sets. With implemented locks realizing synchronization, the
operators of the example queries are simply too weak in
computational efforts for compensating that expensive syn-
chronization. We will further enhance that mechanism in
the future to provide a speedup with multithreading even
for simpler operations.

7. CONCLUSION
In this paper, we addressed a part of the problem of query

optimization on data stream processing using modern hard-
ware. Decisions made by an optimizer are based on a cer-
tain cost model and statistics. We, therefore, provided a
calibration approach to get important hardware factors like
memory latencies or clock speed. On SPE side, we measured
with experiments our algorithms and which hardware factors
are necessary for the operations. With those results, we de-
rived a cost model for stream processing queries to decide
the ideal degree of multithreading. Even if simple operators

and small queries do not benefit from parallelization, espe-
cially with expensive synchronization between them, this is
recognized by our model.

It is possible to measure more important hardware influ-
ences, like the Translation Lookaside Buffer (TLB) or ex-
tending queries in such a way that most computation ex-
ceeds cache sizes. However, to get a solid foundation, we
started at a higher logical level and integrated obvious hard-
ware aspects first. It is expected that the results get more
exactly when additional influences are considered, particu-
larly when using different hardware sets on CPU and mem-
ory.
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