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ABSTRACT
We present Hassium, a hardware assisted database concur-
rency control, which is optimized for contention. We use
HTM (Hardware Transaction Memory) although it is known
for overreaction to conflicts. However, Hassium uses HTM to
combine the beneficial parallelism of optimistic concurrency
control (OCC) with the strength of traditional pessimistic
2PL (Two-Phase Locking). An evaluation on a 22-core HTM-
capable multi-core machine shows that Hassium allows for
2X throughput hike on a range of high contention workloads,
and guaranties and maintains satisfactory throughput level
under increasing number of threads, where the OCC and
2PL methods fail to do that.

1. INTRODUCTION
Multi-core in-memory transactional systems promise signif-

icant performance gains over disk-based systems, but recent
proposals often fail to deliver consistently high performance,
and they suffer from low performance under high contention
[18].
This paper presents Hassium, a novel synchronization

scheme which synthesizes optimistic and pessimistic concur-
rency control and HTM, for best performance and stronger
progress guarantees under contention. By progress we mean
the ability to maintain throughput under increasing number
of threads (level of concurrency). We now explain how Has-
sium works around the HTM transaction size limitation, and
then continue to describe the set of features that makes it
superior under contention.

1.1 Using HTM
The first obstacle in using HTM, as the synchronization

method for in-memory database transactions, is the size
limitation. All HTM writes must fit in L1 cache size. Due to
associativity, this size can be very small and most database
transactions will always abort in HTM (we call these aborts
capacity aborts).

One direction to deal with this limitation is to cut a big
database transaction T to smaller parts and execute each
of them with HTM. In [4] they leverage the transaction
chopping [14] technique for this purpose, but as explained
in [21], chopping enforces strict restrictions on T . A more
flexible way is to divide T to segments that each accesses
a single row (a unit of concurrency control). As T is split
to small pieces that execute independently, a higher level
synchronization protocol, is required to keep T serializable.
In [9] that higher level protocol is a variation of timestamp
ordering (TSO). While this approach allowed the creation
of a concurrent version of HyPer database [7] with minimal
effort, it implies a centralized timestamps generation which is
not scalable. In addition, TSO is too restrictive and may not
tolerate high contention. In [9] they manage to dynamically
partition the workload and minimize contention, to make
TSO a scalable higher level protocol, but this is not possible
in the general case.
There were suggestions to split an HTM transaction to a

read only prefix which is executed without synchronization,
followed by validation and writing in HTM [17]. However,
this method forces all updates of a transaction to occur
within one HTM transaction, which can not accommodate
the updates of an arbitrary database transaction. In split
hardware transactions from [10] they accumulate read and
write sets during small splits of a large transaction and use
an HTM transaction to atomically validate the read-set and
write the write-set. Again, for database transactions, writing
the write-set in a single HTM transaction is not feasible.
Hybrid TM (HyTM) [8] is the name for generic methods

to ensure HTM progress, while maintaining parallelism. In
HyTM a code segment can run concurrently in HTM, and in
pure software if it was not able to commit in HTM. However
in HyTM every access to shared memory must be instru-
mented, and to avoid higher level synchronization, they must
include all code, including index access etc. For a database
transaction HyTM will always run slowly in software.
In DBX [16] they use use one HTM transaction in the

commit phase of an OCC algorithm, and wrap each access
with a separate HTM transaction. The main problem with
their algorithm is that the commit method in OCC writes,
after successful validation, the full write-set to its final des-
tination. In a database transaction the written data will
frequently violate the HTM size limitation. In addition,
when contention exists in the workload, it is likely that HTM
aborts will accumulate fast and hurt the performance.
Hassium approach: Hassium wraps each row access,

for read or write, not including the index part, within a
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Writer Allows Reader Writer See Writer Reader Allows Writer At Least One Survives
Hassium Yes Yes Yes Yes
OCC Yes No Yes No
ETL No Yes Yes No
2PL No Yes No Yes
HTM No No No Yes

Figure 1: Concurrency control algorithms and their features

separate HTM transaction, called the access transaction.
Another HTM transaction is performing the commit, and a
separate transaction is used for deadlock detection. However,
the HTM transaction that is used for database commit, in
Hassium, includes a read-only prefix, followed by a single
write, immediately followed by an HTM commit. The same
is true for the deadlock detection HTM transaction. The
HTM transactions which are used for data access, write the
before-image to the undo log. A read never writes shared
memory and the write is only writing shared memory once
for acquiring the row, followed immediately by an HTM
commit. Copying continuous memory is HTM friendly as it
does not challenge cache associativity.
Intel’s HTM is using large bloom filters to detect conflicts

while allowing read-set entries to be evicted from L1 cache
without aborting the HTM transaction [12]. This way the
HTM transaction can accommodate very large read-sets.
Thus, Hassium is built on the assumption that a potentially
large read-only prefix is tolerable.

1.2 Related Work
Although there have been recent suggestions for efficient

in-memory MVCC [11], we chose to avoid the rapid garbage
collection, and maintain only actual data. Another design
choice of Hassium is not to partition the data, as done in
H-Store [5], because in realistic workloads transactions cross
partition boundaries and performance rapidly degrades [15].
Some new designs use static and dynamic analysis to regulate
parallelism [13], but this approach can introduce high latency
and impractical constraints.
Hassium approach: Hassium is a single-version, shared-

everything concurrency control method. Below we compare
Hassium with competitors from this category.

1.3 Comparable Related Work
Before we go into the details of Hassium, and to an experi-

mental evaluation of it, we make a characteristic comparison
to see what makes Hassium unique. We introduce the types
of algorithms that share Hassium approach of single-version
and shared-everything concurrency control. Then we de-
scribe the set of characteristics that make them scalable in
contention, and then we show that only Hassium contains
all of these characteristics.
We split the Hassium category of algorithms to the follow-

ing subcategories:

• Optimistic concurrency control (OCC): An OCC
algorithm, e.g Silo [15] and TicToc [20], has three
phases: The transaction reads records from the shared
memory and performs all writes to a local, private copy
of the records (the read phase). Later, the transaction
performs a series of checks (the validation phase) to
ensure consistency. After successful validation, the
OCC system commits the transaction by making the

changes usable by other transactions (the write phase).
If the validation fails, the transaction is aborted and
nothing is written. If two OCC transaction execute
concurrently, they never wait for each other.

• Encounter time locking (ETL): In ETL, readers
are optimistic, but writers lock the data which they
access. As a result, writers from different ETL trans-
actions see each other, and can decide to abort. It
was verified empirically in [6] that ETL improve perfor-
mance of OCC in two ways. First they detect conflicts
early and often increase the transaction throughput
because transactions do not perform useless work, as
conflicts discovered at commit time, in general, cannot
be solved without aborting at least one transaction.
Second, encounter-time locking allows us to efficiently
handle reads-after-writes (RAW) without requiring ex-
pensive or complex mechanisms.

• Pessimistic concurrency control (2PL): Lock a
row at access time for read or for write, and release
the lock at commit time. These algorithms require
some deadlock avoidance scheme. The deadlock can
be detected by calculating cycles in a wait-for graph or
avoided by keeping time ordering in TSO [2] or by some
back-off scheme. In 2PL algorithms, if one transaction
is writing a row, no other transaction can access it, and
if a row is being read, no transaction is allowed to write
it.

• Hardware transactional memory (HTM): Cur-
rent implementations of HTM do not allow any access
concurrent with a write, but if two transactions conflict,
one of them survives, according to the requester-wins
policy [1].

After we saw the methods comparable with in Hassium,
we can stipulate what characteristics of each algorithm make
it scalable under contention:

• Writer Allows Reader: If two live transactions T1
and T2 access a row R, Hassium allows T1 to read R
after T2 wrote R. This is good because there is a chance
that both T1 and T2 will later commit successfully, if
T1 will commit before T2. Hassium shares this feature
with OCC.

• Reader Allows Writer: If two live transactions T1
and T2 accesses a row R, Hassium allows T2 to write R
after T1 read R. Again, there is a chance that both T1
and T2 will later commit successfully, if T1 will commit
before T2. Hassium shares this feature with OCC and
ETL.

• Writer see Writer: If T1 access R for write, and T2
also needs to write R, T2 will see T1 is writing R, and
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may abort or wait as long as it does not introduce a
deadlock. OCC allows both T1 and T2 to proceed after
writing R but this implies wasted work as one of them
will later have to abort. Hassium shares this feature
with 2PL and ETL.

• At Least One Survives: In the case that T1 wrote
R1 and T2 wrote R2, and then T1 read R2 and T2 read
R1, in Hassium, either T1 or T2 will always survive.
This is not true for OCC, where in commit T1 would
lock R1, T2 would lock R2, and in validation, if this
occurs simultaneously due to contention, both will see
a locked item in their read set and will abort. Hassium
shares this feature with 2PL and HTM.

To summarize we show in Figure 1 the set of method
subcategories and the set of characteristics which they share
with Hassium. As shown, none of the existing algorithms
accommodates all the features which make Hassium scalable
under contention.

The remainder of this paper is organized as follows. In
Section 2 we present the Hassium algorithms and in Section 3
we prove its correctness and in Section 4 performance results
of Hassium are reported. We conclude in Section 5.

2. HASSIUM
Hassium uses small HTM transactions which read or ac-

quire a single row, and use another transaction to commit
the database transaction. Unlike [9] the readers do not write
anything into the rows, but unlike OCC, the writers are
pessimistic. Hassium breaks the database transactions to
code segments (splits) that each accesses a single row, and
exploits HTM to execute efficiently, both the splits and their
reassembly. The following HTM transactions can participate
in a Hassium database transaction:

• Read: Locates the last committed version of the row
and reads the data.

• Write: This transaction simultaneously:

– Copies the row to the undo-set.
– Links the row to the committed version which was

copied to the undo-set.
– Locks the row.

The data is written in place, out of the HTM con-
text, and concurrent read HTM transactions use the
committed data which is linked from the row to the
undo-set.

• Commit: Validates the read-set and commits the
database transaction.

• Deadlock prevention: If a write sees a concurrent
write, it can just abort immediately, or call this trans-
action to prevent deadlocks and wait.

The Hassium HTM transactions fit within the HTM size
limitations so capacity violations practically do not exist.
The HTM aborts are due to conflicts on the same cache line,
i.e., multiple HTM transactions which access the same cache
line and at least one of them is writing. An important part
of Hassium is to reduce these conflicts.

Hassium is designed to be lightweight and minimize both
HTM and database aborts, even when contention is high. The
low abort rate and high throughput of Hassium in workloads
with high contention represents a new exploration of HTM
and is one of Hassium contributions. Still, in extremely high
contention, HTM conflicts problem exists.
Database-related HTM aborts are triggered by the soft-

ware when it sees a potential conflict at the database level.
These aborts are named explicit aborts in HTM terminology.
The need for explicit aborts forced us to use the restricted
transactional memory (RTM) mode of Intel TSX feature [1]
instead of the hardware lock elision (HLE) mode. HLE is
backward compatible with traditional locking and used in
[9]. However, in HLE abort, the hardware automatically
takes the lock, while in RTM, software is able to trigger and
handle aborts. In Hassium, we take advantage of the RTM
flexibility, and abandon the HLE backward compatibility.

2.1 Algorithms
Hassium is executed by a set of concurrent worker threads.

Each worker thread has a unique ID (tid) and a local monotonous
increasing version counter (tv). In addition, a global Last
Committed versions Array (lca) is maintained. A database
transaction is uniquely identified by its tid and tv.
Each thread has a slot in the lca and upon a successful

database commit, it writes tv in its slot in the lca, i.e.,
lca[tid] ← tv, and then increments tv locally. A database
row also has the attributes rid and rv, which are the tid and
tv of the last transaction, T , that wrote it. If T is live, i.e.,
uncommitted, the row has a link to prev which is the last
committed version of the row, including its rid, rv and data.
The prev link is valid only while a live transaction is writing
the row. In total, the prev links point to the undo-set of the
live database transaction T .
We split the database transaction to small HTM transac-

tions that access a row for read or for write, and use another
HTM transaction to perform validation and commit of the
database transaction. If a writer sees a row is being written
by another live database transaction, it checks for deadlocks
to decide if to wait or abort the database transaction.
The commit HTM transaction may be larger, but it is

read-only until it finally writes to the lca and immediately
commits.

2.2 Starting HTM and Handling Conflicts
In this section we see how an HTM transaction is trig-

gered and conflicts are handled in Hassium Access func-
tion. The Access function starts with a call to the function
HsBeginAccess that is shown in 1. It calls _xbegin which
either returns success or the type of abort. In case of an
explicit abort, the _xbegin also returns a user code for the
abort reason.
We discuss the LOCKED abort code processing in Section

2.3.2, and here we look into the FALLBACK abort code pro-
cessing. If the HTM transaction got more than threshold of
conflicts, it must assume the HTM can not commit success-
fully and fallback to software mode. The simplest fallback
mode is a global lock [1], but this solution serializes the
system.
In Hassium, in case of fallback, we only lock the row.

As the Access accesses a single row, it will never deadlock,
and the lock is released in the HsEndAccess function. We
discuss the delimiters of V alidateCommit and HsDeadlock
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Algorithm 1 Starting HTM

1: function HsBeginAccess(row)
2: while true do
3: status = _xbegin
4: if status = _XBEGIN_STARTED then

. HTM Started successfully
5: if row.is_locked() then
6: _xabort(FALLBACK)
7: end if
8: return true
9: end if
10: if status = _XABORT_EXPLICIT then
11: if abort_code = LOCKED then
12: if HsDeadlock(row.rid⊕ row.rv) then

. Prevent deadlock
13: return false
14: end if
15: if abort_code = FALLBACK then

. Concurrent fallback in progress
16: continue
17: end if
18: end if
19: else
20: Increment(aborts_count)
21: end if
22: if aborts_count > threshold then
23: row.lock()
24: end if
25: end while
26: end function

and how they maintain consistency and progress in Sections
2.4 and 2.5. If the Access function will see the row is acquired
by a concurrent transaction in fallback path, it triggers an
explicit HTM abort with FALLBACK code.

2.3 Access a Row
The pseudo code for the Access function is in Algorithm 2.

It starts an HTM transaction in line 2, and the whole function
is executed in transactional context. If the HsBeginAccess
returned false, then this is a write access which is in a
deadlock, and returns NULL in line 4 to abort the database
transaction.
In line 7 the Access checks if the row was already written

by the executing database transaction, by comparing the rid
and rv to their current local values, i.e., tv and tid. If it is
an access after write, the row is reused for the current access,
and nothing is recorded in the read and undo sets. At this
point we see the low overhead of the pessimistic writes.
If this is not an access after write, In line 12, if the ver-

sion of the row (rv, rid) is committed according to the lca,
committed is set to true. Otherwise, the row is currently
being written by a live transaction, and committed is set to
false. At this point the function splits to different write and
read paths.

2.3.1 Read
In line 16 If the row is committed, lc, i.e. pointer to

Last Committed version of the row, is set to the row itself.
Otherwise, the lc is set in line 19 to row.prev. In the next
section we show how the write sets the row.prev field. In

Algorithm 2 Getting access to a row

1: function Access(row, type)
2: if HsBeginAccess(row) = false then
3:
4: rc ← null
5: goto 35

. Deadlock, so abort
6: end if

. Started HTM
7: if row.rid = tid ∧ row.rv = tv then
8:
9: rc ← row
10: goto 34

. Access after write by same transaction
11: end if
12: if lca[row.rid] ≤ row.rv then
13: committed ← true

. Row is committed
14: end if
15: if type = read then
16: if committed then
17: lc ← row

. Row is committed
18: else
19: lc ← row.prev

. Row is written by a live transaction
20: end if
21: rs ← (row, lc.rid, lc.rv)

. Add to read-set for validation
22: rc ← copy(lc)

. Copy last committed version for user
23: goto 34
24: end if

. It is a write access
25: if committed then
26: e ← copy(row)

. Create an undo-set entry
27: row.prev ← e
28: row.rid ← tid
29: row.rv ← tv
30: rc ← row

. Row is locked
31: else . Live writer, so abort HTM
32: _xabort(LOCKED)
33: end if
34: HsEndAccess(row)

. Successful write, Commit HTM
35: return rc
36: end function

line 21 the rv and rid of lc are recorded in the read-set (rs),
together with a pointer to the row itself.

2.3.2 Write
In line 25, as previously done in line 16 for the read access,

committed is checked, and if there is no concurrent writer
who acquired the row, an undo-set entry is created in line
26 and linked to the prev pointer in line 27. However, if
there is a live concurrent transaction that writes the row, an
HTM abort is triggered in line 32 with the code LOCKED. The
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execution jumps to the HTM abort path in HsBeginAccess
function (from Algorithm 1), and in line 11 it sees the LOCKED
code, and in line 12 it calls HsDeadlock to see if it can wait,
i.e. retry the access, or abort to prevent a deadlock. In
case there is a deadlock, HsBeginAccess will return false
and not restart the HTM. In response, in line 4 the Access
function will set the output row to NULL, to trigger a database
abort, and exit the function.

Algorithm 3 Validate and commit or abort
1: function ValidateCommit(T)
2: status ← commit
3: HsBeginV

. Start HTM
4: for e ∈ T.rs do
5: if e(rid, rv) = e.row(rid, rv) then
6: continue
7: end if
8: if lca[e.row.rid] ≥ e.row.rv then

. Newer writer is committed
9: status ← aborted
10: break
11: end if

. Current writer (possibly self) is live
12: if e.row.prev(rid, rv) 6= e(id, rv) then

. Already different committed data
13: status ← aborted
14: break
15: end if
16: end for
17: if status = commit then
18: lca[tid] = tv
19: end if
20: HsEndV

. Commit HTM
21: if T.us 6= ∅ then

. Writing transaction: undo-set (us) is not empty
22: lfa[tid] = tv
23: increment(tv)

. Increment, cannot reuse the tv
24: end if
25: if status = aborted then
26: rollback(T)
27: end if
28: cleanup(T)

. Truncate read-set and undo-set
29: end function

2.4 Validation and Commit
The pseudo code for the validation and commit function

is in Algorithm 3. From line 3 to line 20 it executes an
HTM transaction to verify that the values accessed by the
optimistic readers are not overwritten by newer committed
database transactions, and if the validation passes it commits
the values written by the pessimistic writers, by setting the
transaction version (tv) in the lca in line 18. After the HTM
transaction, if the transaction was a writing transaction, i.e.
in line 21 the undo-set is not empty, the code sets the current
tv in the lfa, i.e. the Last Finished transactions Array, and
then increments the local tv in line 23. We can not reuse
tv for writing, as it is already marked as finished in the

lfa, and can lead to deadlocks. The lfa is used only in
deadlock checking, were it does not matter if the database
transaction committed or aborted, only if it is finished, or
live and may hold locks. If status is aborted, a rollback is
executed in line 26.
To verify the readers saw a consistent view, i.e., the last

committed values, we have a two-step validation. If the rv
and rid logged by the read for this row are unchanged, as
verified in line 5, the reader saw the last committed values
and can continue in line 6. The second case where a read
can be valid is when the current rv and rid of the row are
different than the logged ones, but they represent a live
transaction and the logged rv and rid are linked from the
prev of the row, so the logged data is still the last committed
version. In line 8 the the current rv and rid of the row are
checked to see if they represent a committed transaction, and
if they do, abort in line 9. In line 12 the logged rv and rid
are compared to the last committed ones in row.prev, and if
they are equal, then the version logged by the transaction is
the last committed one. Otherwise, the transaction aborts
in line 13.
In case of excessive HTM aborts, the HsBeginV is taking

a fallback lock which serializes all validations. In case a
validation executes in fallback mode, It must lock the read
set, and when it is HTM mode it must check the row is not
locked by Access fallback. This can not create a deadlock,
as there is only one V alidateCommit in fallback, and each
Access execution can hold up to one row. However, the
HsBeginV is counting rows that are locked for a fallback as
conflicts towards a fallback of the V alidateCommit function.
In case of a fallback of V alidateCommit, it must release the
fallback locks from all the read-set before calling HsEndV
to release V alidateCommit fallback lock.
Rollback: If the transaction aborts, it rolls back in non-

transactional context. The data is restored, and then the last
committed rv and rid are written by a single store instruction
per row. only after the committed version is restored, the
row actual data becomes visible to concurrent accesses.

2.5 Deadlock Detection
We exploit HTM and the tid, tv, rid and rv we have

in Hassium to devise a very efficient deadlock detection
mechanism, which is presented in Algorithm 4. The wait-for
graph (WFG) is simply an array where each thread has a slot
at the index which corresponds to its own tid. The blocker
is the rid and rv of the row the transaction needs to write.
The function starts an HTM transaction and then traverses
the WFG, where in line 11 it checks if, according to the last
finished array (lfa) the thread whose tid is the slot index is
waiting for a live transaction. If yes, in line 19 it goes to the
slot whose index is the rid written in this slot, starting from
the slot index blocker.rid. If there is no deadlock, i.e. the
traversal reached a committed/aborted blocker, according to
the lfa in line 11 the function writes the original blocker in
its slot in line 28 and immediately commits the HTM. When
a deadlock occurs, there is exactly one thread that identifies
it. As seen in lines 16 and 17, it chooses the transaction
with the smallest write-set, a.k.a. karma, and if there was a
deadlock, terminates that transaction in line 28. In all cases,
if a transaction was the victim, it returns true, to signal
there was a deadlock, and if the blocker transaction commits,
it returns false to resume caller transaction.
Fallbacks: In case HsBeginDL, in line 7, is encountering

5



Algorithm 4 Deadlock Detection and Prevention

1: function HsDeadlock(blocker)
2: lock_holder ← blocker

. Keep the original lock holder
3: deadlock ← false
4: victim ← tid
5: karma[tid] ← write_set_size
6: min_karma ← karma[tid]
7: if HsBeginDL = false then

. Start HTM
8: return true
9: end if
10: while deadlock = false do
11: if lfa[blocker.tid] ≥ blocker.tv then

. blocker is committed
12: WFG[tid] ← lock_holder
13: break
14: else

. Update the victim
15: if karma[blocker.tid] < min_karma then
16: min_karma ← karma[blocker.tid]
17: victim ← blocker.tid
18: end if

. Go to the next transaction in the WFG
19: blocker ← WFG[blocker.tid]
20: end if
21: if blocker.tid = self.tid then

. If the blocker is self, we have a deadlock
22: deadlock ← true
23: end if
24: end while
25: HsEndDL

. Commit HTM
26: if deadlock = true then
27: WFG[tid] ← lock_holder
28: WFG[victim] ← ⊥
29: end if
30: while true do
31: if lfa[lock_holder.tid] ≥ lock_holder.tv then

. No deadlock
32: return false
33: end if
34: if W F G[tid] = ⊥ then

. There was a deadlock
35: return true
36: end if
37: end while
38: end function

too many aborts, it returns true, and the database trans-
action is aborted. In our experiments, this scenario is very
rare. The deadlocks detection never takes locks.

3. CORRECTNESS
Before we continue to the details of Hassium interaction

with HTM, we make sure it is correct, that is, serializability
is maintained and progress is guaranteed.

3.1 Safety
A transaction Ti is a set of reads ri(x) and writes wi(y)

followed by a commit operation ci. According to [3] two
operations are said to conflict if they both operate on the
same data item and at least one of them is a write. We say
that an operation oi(x) precedes in a conflict an operation
oj(x) if oj(x) is a read and oi(x) is a write, and oj(x) read
what oi(x) wrote, or if both oi(x) and oj(x) are writes and
the final value of x is written by oj(x).
The serialization graph of an execution, is a directed graph

whose nodes are the committed transactions and whose edges
are all Ti → Tj , (i 6= j) such that one of Ti’s operations
precedes and conflicts with one of Tj ’s operations. The
serializability theorem [3] maintains that an execution is
serializable if it creates an acyclic serialization graph.

Lemma 1. Hassium forces strict order among the HTM
transactions ci and cj that represent the commit of the cor-
responding database transactions Ti and Tj.

Proof. As both ci and cj are executed in HTM transac-
tions, i.e. lines 3 to line 25 in Algorithm 3, and as HTM has
single global lock semantics, either ci → cj or cj → ci.

Therefore in Hassium executions, transactions have inher-
ent order, and we say Ti precedes Tj if ci precedes cj .

Lemma 2. If two operations oi(x) and oj(x) conflict, if
oi(x) precedes oj(x) than Ti precedes Tj.

Proof. We assume by contradiction that oj(x) precedes
oi(x) in a conflict but Ti precedes Tj . If oi(x) read from
or wrote on the same row (item x) that oj(x) wrote, than
in line 12 of Algorithm 2 Ti saw the tv of Tj in lca, which
means Tj committed in line 18 of Algorithm 3 while Ti was
still alive.

From lemmas 1 and 2 we conclude that if there is an
edge from Ti to Tj in a serialization graph, than i < j
and therefore the graph is acyclic, and according to the
serializability theorem:

Theorem 3. Transactions that follow Hassium algorithm
are serializable.

3.2 Liveness
First, we note that our deadlock detection scheme always

lets the most advanced transaction continue, so deadlocks will
not happen. Second, we show that a livelock is impossible.
Namely, if Ti writes on a row that Tj reads, and Tj writes on
a row Ti reads, they might both abort and go into infinite
retries. However, this is not possible, as Ti will cause Tj to
abort in line 8 of Algorithm 3, only if Ti committed, and
then progress has been made.

4. EXPERIMENTAL EVALUATION
We now present our evaluation of Hassium. For these

experiments, we use the DBx1000 OLTP DBMS [19]. This
is a multi-threaded, shared-everything system that stores
all data in DRAM in a row-oriented manner with hash ta-
ble indexes. DBx1000 uses worker threads (one per core)
that invoke transactions from a fixed-length queue. Each
transaction contains program logic intermixed with query
invocations. Queries are executed serially by the transac-
tion worker thread as they are encountered in the program
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logic. Transaction statistics, such as throughput and abort
rates, are collected after the system achieves a steady state
during the warm-up period. DBx1000 includes a pluggable
lock manager that supports different concurrency control
schemes.

4.1 Hardware Settings
We deployed DBx1000 on a 22-core machine with four

Intel Xeon E5-2699-v4 CPUs and 250 GB of DRAM. Each
core supports two hardware threads, but we disabled them
as hyperthreading can make HTM non deterministic.

4.2 Comparison With Other Algorithms
To see the contribution of the different characteristics to

performance, we use three variants of Hassium:

1. HS: The Hassium version from Section 2.

2. HS-NDL: Hassium with No DeadLock - To check the
contribution of deadlock detection, we use Hassium
where a writer that sees an uncommitted data, i.e.
a row acquired by a concurrent writer, immediately
aborts.

3. HS-ETL: To check the contribution of a writer allows
reader, we use a Hassium flavor where a reader or a
writer that sees an uncommitted data, immediately
aborts.

We compared Hassium to the following algorithms:

1. TSO-HTM: This is our implementation of [9].

2. 2PL-DL: The DL-DETECT algorithm from [15]. A
pessimistic two phase locking algorithm with deadlock
detection.

3. 2PL: The NO-WAIT algorithm from [15]. The pes-
simistic two phase locking without deadlock detection,
which always aborts and backoff if it fails to lock.

4. TICTOC: This is the original implementation from
[20]. The most scalable to contention OCC algorithm
we are aware of.

5. DBX-HTM: The HTM based OCC algorithm from
[16]. HTM is used to avoid locking in commit and data
access.

We do not show the plain Intel HTM [1] applied to entire
database transactions, as we saw it can not scale to arbitrary
transactions or contention.

4.3 Workloads
We next describe the three benchmarks that we executed in

the DBx1000 testbed [20] for this analysis. First we show the
impossibility test which shows Hassium robust throughput
under high concurrency, second is TPC-C and third is YCSB
benchmark.

4.3.1 Impossibility Test
We created a synthetic, YCSB like workload. There is

a table with n rows (r1...rn) and n connections threads
(t1...tn). A transaction on thread tk writes rk, and then
reads all the other rows and commit. While this is not a
realistic workload, it represents scenarios that can occur in

the life of a database. When we executed this workload
with the different concurrency controls, all except HS and
HS-NDL cannot perform under high concurrency and did
not progress at all. We expected this behavior from the OCC
TICTOC algorithm. However, the 2PL-DL also encountered
repeatable deadlocks and HS-ETL always aborted as a reader
saw a locked write.
While it is possible to guarantee progress in OCC by

serializing commits, or in 2PL by grabbing a global lock,
these techniques can have bad effect on the whole system
performance. Hassium manages to progress as is, due to
its characteristics, i.e. writers do not stop readers and the
At Least One Survives characteristic we describe in Section
1.3.

Figure 2 shows that both HS and HS-NDL manage to
maintain progress in this unscalable workload. All other
concurrency controls could not progress already with two
cores. We did not check Cicada [11], as it is MVCC, but
to our understanding, a Cicada validation will see PENDING
versions in all its read-set and block or backoff, i.e. will not
make progress either.

4.3.2 TPC-C
This workload is the current industry standard to evaluate

OLTP systems. It consists of nine tables that simulate a
warehouse-centric order processing application. Only two
(Payment and NewOrder) out of the five transactions in
TPC-C are modeled in our simulation. These two make up
88% of the default TPC-C mix and are the most interesting
in terms of complexity for our evaluation.

4.3.3 YCSB
The Yahoo! Cloud Serving Benchmark is representative of

large-scale on-line services. Each query accesses a single ran-
dom tuple based on a Zipfian distribution with a parameter
(theta) that controls the contention level in the benchmark.
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Figure 2: Throughput for the impossibility test.

4.4 Performance data
For each workload we created four graphs, besides through-

put, to understand the root of the performance. Each point
in the graphs is the average of 6 executions:
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Figure 3: TPC-C Payment transactions with eleven warehouses, throughput and various abort rates graphs

1. Throughput: Performance measured in transactions
per second.

2. Aborted database transactions: The part of the
database transactions that were aborted, out of the
committed number of database transactions.

3. Aborted work: Part of the time spent in executing
transactions that were eventually aborted, out of the
total execution time.

4. Aborted HTM: Part of HTM transactions that were
aborted due to conflicts, out of total HTM transactions
that were started. Capacity aborts are almost extinct,
and we do not show explicit user aborts, as they are
not counted towards going to the fallback path.

5. Fallback HTM: Part of HTM transactions that were
aborted more than 20 times due to conflicts, and had
to take the software path.

4.5 Performance analysis
This section presents results for TPC-C and YCSB, which

allows us to see how Hassium performs in a range of con-
tention levels.

4.5.1 TPC-C Results
We show Payment with eleven warehouse in Figure 3, so

contention gets high with more than 11 cores. The first
insight from the throughput graph of payment (Figure 4a),
is that with high contention deadlock detection improves
Hassium performance significantly. This is the only difference
between HS-NDL and HS, and in high contention (22 cores)
HS is seventy percent faster than HS-NDL. The reason is
that there is a lot of contention but no deadlocks so work
can be saved. Note that OCC cannot implement deadlock
detection, so this is an important advantage of Hassium over
OCC.
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Figure 4: TPC-C NewOrder transactions with one warehouse, throughput and various abort rates graphs

Another phenomenon we see is that the HS-NDL and HS-
ETL have higher abort count in Figure 3b than TICTOC,
but TICTOC has higher amount of aborted work as seen in
Figure 3d. The reason is that both HS-NDL and HS-ETL
have early aborts, while TICTOC is aborting only at the
completion of the transaction, so each of its aborts is losing
more work. Again, this is an inherent advantage of Hassium
over OCC which can not implement early aborts.

Compared to 2PL, HS has less aborts, and 2PL-DL is sim-
ply having higher overhead for deadlock detection, as it has
the lowest DB abort rate, but also the lowest performance.

The DBX-HTM which is doing the commit and the access
in HTM, has the lowest performance under contention. The
reason can be seen in the HTM fallback rate. We verified
that practically all the HTM aborts happen in successful
DB commits at the write-back phase. If we extract the

writing back from HTM, DBX-HTM performs even better
than TICTOC. However, as most successful commits fail to
commit in HTM, other transactions proceed, and the amount
of database aborts in DBX-HTM grows. Together, the HTM
aborts and the database aborts are making DBX-HTM the
slowest algorithm for TPC-C payment transaction.

We show NewOrder with one warehouse in Figure 4. There
are 10 districts so contention gets high with more than 10
cores. In NewOrder the deadlock detection is not helping
and actually is has some overhead as seen from the fact
that HS-NDL is somewhat faster than HS. The root of HS
variants better performance is again, less aborted work due
to early aborts compared to OCC, and reads which progress
concurrently with writes, unlike 2PL.
The worst performance in NewOrder belongs to TSO-

HTM [9] as it writes in read accesses which increases its
HTM aborts and fallbacks as seen in Figure 4c, as well as
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Figure 5: Throughput graphs for YCSB workloads with Low contention.

aborted transactions rate 4b and aborted work 4d.

4.5.2 YCSB Results
We continue to YCSB where it is easier to control the

workload characteristics.

4.5.2.1 Low Contention.
To summarize, we see that Hassium is optimized for high

contention, and there it is the best. For low contention, as
seen in Figure 5a the 2PL are better. As in low contention
no serialization is caused by locking, the overhead of the
OCC, e.g. versioning, validation and bookkeeping, makes it
less optimal.
Figure 5b shows a workload with zipf 0.9 but only 10%

writes. Up to 8 cores TICTOC and Hassium are equal but
then Hassium lower number of aborts lets it pass TICTOC.
At 12 cores, 2PL stops scaling and Hassium passes it too.
Thus, this workload on 12 cores marks a contention where
Hassium becomes the most efficient concurrency control.

4.5.2.2 High Contention.
There are three parameters that determine the contention

level and contention type in a YCSB workload: the theta
of the zipfian distribution, the portion of writes out of the
total access, and the number of requests per transaction.
With 10 requests, When theta= 0.8 and 50% of the access

are writes, in Figure 6a, we can see HS is best from 12 cores
were it passes 2PL which stops scaling. However from 20 to
22 cores HS performance drops and the reason is shown in
Figure 6b which shows the HTM abort rate in 22 cores is 1,
which means on average each HTM transaction experienced
an abort. The HS-NDL has fewer aborts and scales better
from 16 cores. The reason is that in very high contention
the deadlock-detection does introduce some HTM contention.
The HS-ETL performance is as HS but it shows few aborts.
This is misleading as in HS-ETL a transaction gets aborted
when it sees a locked row, but these are explicit aborts and

are not counted by the framework.
Figure 6c shows the same workload as Figure 6a but with

theta = 0.9. This change increases the HS abort rate, as
seen in Figure 6d so now it gets to 1 already in 12 cores, and
in 22 the abort rate of HS is 3, i.e. each HTM transaction is
retried 4 times on average. From 16 cores, when HTM abort
rate reaches 2, the HS performance drops below TICTOC.
The reason for the high HS abort rate is that each transaction
sees writes from multiple other transactions and then they
conflict in the database commit HTM transaction on the lca
slots.
In Figure 6e the theta is 0.95, i.e. the zipfian distribution

is much more contentious. However, we reduced the number
of requests to 5, so each live transaction sees less live trans-
actions on average. As a result the HTM abort rate of HS
reaches 1 only at 22 cores and it stays on top for the whole
experiment. On 22 cores HS and TICTOC are equal but the
HS-NDL and HS-ETL variants still win.

5. CONCLUSION AND FUTURE WORK
We have presented Hassium, a novel concurrency control

which uses HTM, as well as principles from optimistic and
pessimistic approaches. We show in experiments that for a
range of high contention database workloads, Hassium has
up to 2X better performance than state of the art synchro-
nization algorithms that use, or do not use HTM.
In addition we showed both theoretically and in experiment

that Hassium, although it uses HTM, has stronger progress
guarantees than software based 2PL and OCC. In fact, we
show a workload where Hassium manages to commit trans-
actions with 22 threads, while all other concurrency control
algorithms throughput drops to zero with two threads.
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