
Computational Storage For Big Data Analytics

Balavinayagam
Samynathan
Bigstream Inc.

bala@bigstream.co

Keith Chapman
Bigstream Inc.

keith@bigstream.co

Mehdi Nik
Bigstream Inc.

mehdi@bigstream.co

Behnam Robatmili
Bigstream Inc.

behnam@bigstream.co

Shahrzad Mirkhani
Bigstream Inc.

shahrzad@bigstream.co

Maysam Lavasani
Bigstream Inc.

maysam@bigstream.co

ABSTRACT
This paper discusses the advantages and benefits of com-
putation near storage or computational storage in the con-
text of Big Data analytics. SmartSSD computational stor-
age platform from Samsung provides an opportunity for fast
data transfers from storage to FPGAs, which can facilitate
acceleration of big data processing. In this paper, we dis-
cuss our full stack acceleration approach, with zero appli-
cation code change, for modern open source Big Data envi-
ronments on accelerators like FPGAs and GPUs, with focus
on Apache Spark as our Big Data environment and FPGAs
as acceleration devices. We discuss changes that were made
to our traditional software and hardware stack in order to
incorporate computational storage platforms. The paper de-
scribes cross-stack optimizations necessary to achieve high
throughput and low latency for SQL query processing for
SmartSSDs. Finally, we showcase our results on TPC-DS
benchmarks, which are state-of-the-art SQL benchmarks de-
signed for Big Data analytic platforms. The results show up
to 6x end to end query run-time speedup for scan-heavy
TPC-DS queries, compared to query run-time for the same
queries executed by vanilla Spark. The average speedup
across all TPC-DS queries is 4x.

1. INTRODUCTION
As Moore’s law is slowing down, traditional CPU and

transistor scaling no longer translates to performance scal-
ing for data centers and cloud systems. As a solution to
this problem, the industry has come up with a number of
hardware accelerators to speedup processing in different do-
mains such as machine learning, data analytics and graph
processing. A clear indicator of this trend is the fact that
accelerators such as FPGAs, GPUs and TPUs are now avail-
able in cloud and data centers [7].

Unfortunately, there is a semantic gap that exists between
the low-level programming model of the accelerators and the

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and ADMS 2019.
10th International Workshop on Accelerating Analytics and Data Manage-
ment Systems (ADMS’19), August 26, 2019, Los Angeles, California, CA,
USA.

high-level analytics languages used by data scientists and en-
gineers. Data scientists and engineers are not able to easily
program and use these accelerators as they need to program
using hardware description languages or low-level program-
ming languages such as CUDA/OpenCL. Even if the ven-
dors provide high level software libraries and APIs, the cost
of changing analytics code is significant. Also, library calls
cannot take advantage of the run-time information associ-
ated with the dynamic nature of the workloads as well as
the dynamic nature of underlying resources. At Bigstream,
we develop hardware-software solutions for enterprise and
cloud-based data centers to fill this gap. Our software plat-
form enables accelerated computing for Big Data analytics
without requiring any code change. This is especially impor-
tant for cleansing, managing, and analyzing huge volumes
of data that is required for AI/ML solutions. Today’s clus-
ters are typically managed using distributed software frame-
works on x86-based hardware servers, which include both
open source (e.g., Spark, Hive, etc.) [22] as well as closed
source (e.g., Redshift, Microsoft SQL Server, Snowflake).
In this work we focus on SmartSSD, which is a compu-
tational storage platform introduced by Samsung [5] as a
hardware accelerator near storage. We utilize our technol-
ogy on SmartSSDs to process parts of analytic workloads in
the in-storage peered device (in this case, FPGA) and show
significant performance and throughput improvements.

The rest of the paper is organized as follows: the next
section discusses prior work and background. Section 3 dis-
cusses SmartSSD components and operational mechanisms.
Section 4 describes layers of our software stack and how it
enables acceleration without any user code change for an-
alytic applications. Sections 5 and 6 discuss the hardware
architecture we used and our hardware/software interfaces
respectively. Section 7 and Section 8 present our design and
results on row-based data format for TPC-DS [6] bench-
marks, respectively.

2. RELATED WORK
The concept of moving processing capability near storage

has been explored before in the form of intelligent disks [16]
and active disk [18]. However implementation of such sys-
tems was not practical due to power and cost issues. Com-
mercially this concept was first explored by adding FPGA
near disk in IBM’s Netezza product [13]. With regard to
SSDs, computation near storage is an emerging technol-
ogy that can potentially become essential in modern data-

1



Figure 1: SmartSSD System Architecture1

1Image obtained with permission from https://youtu.be/OHWzWv4gCTs?t=639

center infrastructures so much so that the Storage Network-
ing Industry Association (SNIA) has created a Computa-
tional Storage Technical Work Group to focus on standard-
izing this technology [1]. The idea of query processing on
SmartSSD has been researched [11] where queries were run
on Microsoft SQL Server on SmartSSD which had an embed-
ded ARM processor. Studies like [15] and [21] also discuss
using the same SmartSSD in the context of applications such
as log analysis and document search while our work is fo-
cused on SQL Big Data analytics. The newer generation of
SmartSSDs has a FPGA instead of an embedded processor.
This could lead to better acceleration as custom designs can
perform better than general purpose processors. Our work
utilizes the FPGA in SmartSSD without application code
change to provide speedup. Additionally, our framework
is targeted towards Big Data environments, where clusters
can extend to hundreds of nodes and data size can range
from petabytes to terabytes. Another distinguishing archi-
tectural feature between previous generation SmartSSD and
the one used in this work is that they were based on SATA
or SAS attached SSD while we work with a PCIe attached
card which provides higher SSD throughput. Our software
interfaces use OpenCL API to access SmartSSD from host
application when compared to the OPEN, GET and CLOSE
requests [11] in a session based protocol and this leads to a
better event model for our applications as explained in 7.
There has also been other work that explored part of query
execution near SSD [14], where the query planner was mod-
ified to offload filter functions to ARM processor in SSD
controller. This would work best in the cases where data is
plain-encoded since the ARM processor would find parsing a
compressed file computationally intensive. Our implemen-
tation does scan and filtering for compressed data as well
since the FPGA can do decompression, decoding, parsing,
and then apply filter functions.

3. SMARTSSD ARCHITECTURE
With the ever-growing amount of data that needs to be

processed by data centers, it is critical that servers be able to
consume data effectively from storage devices. In this paper,
we define computational storage as the ability to do compu-
tation or data processing at the storage device level or near
storage, before data is moved to host memory. This paper
exclusively discusses computational storage with respect to
the SmartSSD platform from Samsung [5]. The advantages
of having computational storage has been discussed in prior

work [17, 16, 10, 11]. The primary advantage is reducing
the computational complexity and volume of data reach-
ing CPU’s host memory and scaling processing capability
to maximize storage bandwidth.

The components of the SmartSSD platform are shown in
Figure 1. The SmartSSD platform contains a Xilinx FPGA
and NAND Flash Arrays with 1TB capacity on the same
board which has the form factor of a PCIe add-in card.
The FPGA used in SmartSSD is a Zynq SoC and has ARM
cores. The PCIe in this card is Gen3x4-lane with a theoret-
ical maximum throughput of 4 GB/s. The board contains
8 GB DRAM, which acts as an intermediate buffer when
data is transferred from SSD to FPGA and from FPGA
to host. There is a three-way PCIe switch present in the
FPGA, which can transfer data from/to SSD and FPGA and
from/to SSD to host memory and from/to FPGA to host
memory. SmartSSD supports two modes of data transfer:
normal mode and Peer-to-Peer (P2P) mode. When operat-
ing in the normal mode, read/write is issued by the host and
data is transferred between SSD and host memory through
PCIe. A normal read corresponds to how data is read by ap-
plications of a normal SSD. It is important to note that un-
der normal reads too, data is transferred through the PCIe
switch in the FPGA onto the PCIe Bus. The second mode of
operation is the Peer-to-peer (P2P) mode, in which data is
transferred from SSD to FPGA DRAM for processing by the
local peered devices. For the P2P mode, there is a reserved
memory in the FPGA DRAM which we call Global Acces-
sible Memory (GAM) and is accessible by SSD, FPGA, and
host. This GAM is exposed to the host PCIe address space.
From the software perspective, all access to accelerators and
computing on P2P data in the SmartSSD goes through the
Xilinx OpenCL framework [12]. An application that would
like to use the P2P mode from host software needs to allo-
cate memory in the GAM using OpenCL libraries and ex-
tensions provided by Xilinx (clCreateBuffer with P2P flag
in this case). The allocated memory can then be used by
the SSD for direct read/write access into FPGA GAM. This
constitutes P2P mode of operation for the SmartSSD.

4. A COMPUTATIONAL STACK FOR BIG
DATA ACCELERATION

This section demonstrates layers of our software stack
which facilitate the process of using accelerators in Big Data
applications seamlessly. Our technology stack consists of

2



Figure 2: Hyper-acceleration technology

three important layers as illustrated in Figure 2: data-flow
adaptation layer, data-flow compiler, and hypervisor. The
following section describes these layers in more detail.

1. The data-flow adaptation layer converts internal
data-flow format of Big Data frameworks like Apache
Spark, Hive, Presto, or Tensorflow into Bigstream’s
canonical data-flow format. In this paper, we focus
on Apache Spark [22] which is one of several Big Data
application frameworks popular for its higher perfor-
mance due to in-memory processing. Bigstream canon-
ical data-flow format includes several computation- and
communication-related operators that cover analytics
and machine learning operations. The implementation
of these operators is not tied to any specific platform.
(The canonical data-flow format, resulted from this
layer, can be considered as an intermediate represen-
tation for the next layers.

2. Data-flow compiler is responsible for compiling the
canonical data-flow representation, which is generated
for each application, and mapping to pre-compiled ac-
celerator templates that slice the computation between
different heterogeneous devices. The features of this
layer are illustrated in Figure 2.

3. Hypervisor1 is a high performance C++ library that
interacts with heterogeneous devices like FPGAs, GPUs,
multi-core CPUs, and SmartSSDs, some of which may
exist on the cluster nodes that the users are running
their application on. The pre-compiled accelerator
templates generated by our data-flow compiler layer,
along with the application binary, are broadcast to all
nodes of the cluster. The modified Spark platform, at
run time, executes the accelerated version of the task.
The accelerated task interacts with the hypervisor to
execute the pre-compiled templates on the accelerator
like GPU or FPGA. The hypervisor layer chooses tem-
plates that can run on FPGA, GPU or CPU based on
cost-functions for operators of that stage. More details
are discussed in the following sub-sections.

To make the process of Spark acceleration more clear,
the rest of this section first discusses how Spark executes
user applications on clusters. The section then explains how
Spark execution is seamlessly accelerated during run-time on

1Please note that this is our acceleration stack hypervisor
and is different from the hypervisor used in VMs [8]. Our
computational stack can work across all containers and hy-
pervisor environments.

Figure 3: Spark Execution Illustrated With 3 Tasks
and 2 Stages

different types of accelerator devices across the three layers
described here.

4.1 Spark Execution Overview
The scope of this article is limited to Spark SQL. In

Apache Spark, a user application is executed by a driver
program and one or more executors [22]. The driver program
takes user code and dispatches it to executors across mul-
tiple worker nodes. First, the driver breaks down the user
code into a DAG (Directed Acyclic Graph) of stages. In this
DAG, the operators that have linear dependency (such as
file scan, filter, or map) are grouped in one stage. However,
if the operators have more complex dependencies (such as
groupBy or join), they will end up in different stages. When
running a SQL code, Spark SQL compiler, named Cata-
lyst [9], converts the code into an optimized query plan. A
query plan describes SQL operators and their dependencies
in the query. Eventually, Catalyst generates a DAG and de-
termines which nodes are responsible to run which stages(s)
of the DAG.

Spark divides the data for each stage into multiple data
partitions across the cluster. When running a stage, Spark
executors run the operators in that stage as a set of tasks.
Each task is associated with an independent data partition.
This enables the tasks to be executed in parallel. As an
example, Figure 3 shows an application with two stages.
The first stage has four operators (A, B, C, and D). At
run-time, the stages are executed in the order of DAG de-
pendencies. In this case, Stage 1 gets executed before Stage
2 and each stage runs three tasks on different partitions of
data. For a large number of data partitions, a stage might
consist of thousands of tasks. When all tasks in stage 1
finish, the results are re-distributed across executors. This
re-distribution is known as shuffling in Spark terminology.
Shuffling acts as a synchronization barrier for all executors
and upon completion of shuffling, executors move to Stage
2 of the DAG.

4.2 Spark Acceleration
Figure 4 shows how Spark queries get accelerated us-

ing our hyper-acceleration layers. Two of the layers (data-
flow compiler and hypervisor), described in Section 4.1, are

3



Figure 4: Apache Spark (with and without acceler-
ation)

shown in yellow boxes in this figure. The physical plan arrow
signifies the data-flow adaptation layer.

In Figure 4, the HW accelerator template database consists
of several templates which are associated with a linear set of
operators referred to as Linear Stage Trace (LST). In other
words, LST can be considered as a subset of operators that
need to be executed sequentially within a stage. In case of
FPGAs, a template includes a partially re-configurable bit
file, which is pre-synthesized and optimized to accelerate
each operator in the LST, along with meta-data for neces-
sary run-time configurations. In case of GPUs, a template
includes CUDA/OpenCL binaries that implement the oper-
ators in the LST. In case of CPUs, our templates consist of
native (C++) code which links to our optimized libraries.
There is a cost function that determines which LSTs need
to be implemented on accelerators. This cost function is
tuned by offline profiling of different operators in produc-
tion ETL pipelines and SQL pipelines and it is tuned to be
more effective by adding new profiling data over time.

The adaptation layer interacts with Spark query compiler
and converts the output of Spark query compiler, known
as physical plan to a canonical data-flow intermediate rep-
resentation. This canonical representation is given to our
data-flow compiler, and based on accelerator template avail-
ability, it generates accelerator code which can communicate
with available accelerators (e.g., FPGA and GPU) and will
be running on each executor. If data-flow compiler decides
not to accelerate a stage, that stage will be executed through
the original Spark execution path.

Figure 5 shows more details on the steps taken by data-
flow compiler:

• Slicing and mapping: Based on LSTs in each stage of
the query plan and matching accelerator templates in
template database, our compiler maps each part of the
query plan to different computational resources (e.g.,
FPGA, GPU, CPU, etc.). The cost function for each
operator helps choose the best accelerator match for
each LST in a physical plan.

• Control plane generation: The part of the code gener-
ated for transitioning the control flow between LSTs
and the Spark task.

• Data plane generation: The part of the code generated
for moving the data between LSTs and the Spark task.

As a result of data-flow compiler, an accelerator code is
generated and it is ready to be executed by hypervisor layer.

Figure 5: Bigstream data-flow compiler

At high-level, hypervisor is responsible for picking LSTs in
a stage, loading the right accelerator code for it (if exists),
preparing the environment for task execution if necessary
(e.g., FPGA partial programming), and executing the code
on the accelerator device.

Now we will describe run-time components in hypervi-
sor for the same example shown in Figure 3. Figure 6 il-
lustrates the acceleration of the first stage of this sample
query. As shown in Figure 3, the first stage includes opera-
tors A, B, C and D. There can be multiple LSTs associated
with a stage since there are multiple combinations of sub-
sets available for a linear set of operators. For example, if
a stage has three operators X, Y and Z that need to be
executed sequentially, then any possible sequential combi-
nation of LSTs can provide the optimal performance. For
example, based on data size, operator type, any combination
of LST{X,Y} or LST{X} or LST{X,Y,Z} can provide best per-
formance in a Stage. In our example, Stage 1 can be repre-
sented by (LST{A,B}, LST{C,D}), or (LST{A}, LST{B,C,D}),
or (LST{A}, LST{B}, LST{C}, LST{D}), etc.

Assume our data-flow compiler finds FPGA accelerators
for LST{A}, LST{C}, and LST{D}. It also finds a native ac-
celerator for LST{B}. This means that operators A, C, and
D will be executed on FPGA, while operator B will be exe-
cuted on a CPU by native code. In Figure 6, a list and order
of LSTs that are going to be executed at each time is deter-
mined by Execute Stage Task step. In our example, it picks
LST{A} first. Since this LST can be executed on FPGA,
the hypervisor programs the bit file from the template and
it configures the FPGA with specific parameters from the
template. Then it executes LST{A} on the FPGA. Accord-
ing to data-flow compiler, the next LST would be LST{B}.
Since this LST has a native template, it will be executed
on the CPU with our native libraries. LST{C} is the next
to be picked. Based on operator functionality, the current
programmed template (in this case, template for LST{A})
cannot be reused for LST{C}. Therefore re-programming
the bit file and parameter configuration need to be done for
this LST. The next in the list is LST{D}. Let’s assume that
the operator functionality for current programmed template
(i.e., LST{C}) can be re-used for LST{D}. For example, both

4



Figure 6: Bigstream hypervisor run-time flow

LST{C} and LST{D} could be filter operators and therefore
we could reuse the template. Therefore, hypervisor skips bit
file programming step and only performs parameter config-
uration and runs LST{D} on FPGA. Since LST{D} is the
last one, the result will be considered as Stage 1 result. The
same flow is repeated for Stage 2 of Figure 4. For this stage,
the data-flow compiler finds a template for LST{E,F}, which
can be executed on the FPGA, as the most cost-optimized
option. The hypervisor takes LST{E,F} as the first LST on
the list. Then it checks if the current programmed bit file
can be re-used by this LST. In this example, it cannot be
re-used and the bit file for LST{E,F} is programmed into the
FPGA and the parameters are configured for it. Then the
hypervisor executes operators E and then F on the FPGA.
Since this LST is the last LST in the list of Stage 2 LSTs, the
results will be considered as the results for Stage 2. All of
the above hypervisor steps, discussed in the above example,
are executed as a Spark task running on a Spark executor.

This section focused on the flow of accelerated query exe-
cution in Spark. In the next section, we will focus more on
the architecture of our FPGA accelerators.

5. FPGA SOLUTION ARCHITECTURE
As shown in Figure 7, the hardware components of FPGA

can be split into three sections logically: shell, shim, and
core. The shell region has fixed IP components that interact
outside of FPGA, such as PCIe controller, DMA controller,
DRAM controller, Ethernet controller, etc. It is typically
provided by FPGA vendor. The next layer in question is
our proprietary shim layer, which converts external bus in-
terfaces to compatible interfaces for our core. An example of
this is converting from memory mapped interface to stream-
ing interface which is the most common interface in our tem-
plates. The shim layer also collects error and performance
metrics from the core.

Figure 7: Bigstream Hardware Abstraction Layers

Figure 8: Bigstream hardware - software interface

The partially re-configurable component of the design is
the core region. The core corresponds to SQL, machine
learning and deep-learning operators or a subset of oper-
ators that can be mapped and accelerated in FPGA. The
core region, which includes RTL IPs, is converted to RTL
Kernels in Xilinx SDAccel Development Environment [4].
This enables us to use the same software interface model as
OpenCL instantiated kernels. Based on the area constraints
of the FPGA, our core region can consist of multiple RTL
kernels. The independent RTL kernels operate on mutu-
ally exclusive partitions of data. These RTL Kernels can be
considered as logically equivalent of having multiple inde-
pendent cores in a processor.

6. SOFTWARE INTERFACE FOR FPGA
BASED ACCELERATORS

As discussed in Section 4.1, the data-flow compiler is re-
sponsible for generating codes for specific accelerators like
FPGAs and the hypervisor is responsible for executing the
generated codes on the accelerators. The hypervisor layer
communicates to low level device-specific drivers through an
interface class which has a fixed set of APIs that are called
at run-time by any operator that wishes to use FPGA. The
translation of these API calls to device-specific drivers is
handled through Bigstream’s HAL or Hardware Abstraction
Layer. As shown in Figure 8, these API calls that abstract
away device-specific drivers are being standardized through

5



an open-API initiative, or OHAI (Open Hyper Accelera-
tion Initiative) that will be published in the near future.
These API calls belong to an interface class called OHAI
class interface. Each Spark executor can potentially have
a SQL operator in every stage that instantiates the OHAI
class interface to accelerate on FPGA. As shown in Figure 8
for Vendor C, we also support accelerating Spark streaming
applications by processing TCP/IP based packets in FPGA.
All such interfaces contend to access resources of FPGA. We
have implemented a priority round-robin scheduling to grant
access to FPGA resources. The software and hardware inter-
faces were originally targeted for offload mode of processing,
in which data is brought to host memory and then send to
FPGA for compute acceleration. In this mode, FPGA can
be logically considered to be a co-processor to CPU cores,
sharing host memory with them.

7. DEVELOPING TEMPLATES
FOR SMARTSSD

This section discusses adapting our templates for SmartSSD
and associated optimization necessary for high performance.
With reference to the hardware logical layers in Figure 7,
the shell layer for SmartSSD is provided by Xilinx. Our shim
layer, designed for offload mode, needed a minor modifica-
tion on the DRAM interfaces to adapt to P2P shell. Our
kernels consume Spark data partitions from FPGA GAM
and send the processed data back to host memory in a for-
mat similar to Tungsten [19] rows, which is an in-memory
format used in Spark. For interoperability, all our row based
hardware templates process data internally in a similar for-
mat. We ported multiple of these row based templates to
SmartSSD so that based on the query being processed we
can reconfigure the core region. All templates in the core re-
ceive data to process from FPGA GAM and send the result
back to FPGA DRAM. After porting our design, the con-
figurable logic blocks (CLB) utilization was 52% to 64% for
our designs with the core region operating at 200Mhz for
the row-based templates with three kernels. As explained
in Section 4, a query can pick different templates based on
application requirements and the cost function of the tem-
plate. On the software side, changes are necessary to make
sure that data partitions generated by Spark are read into
P2P GAM as opposed to host memory in the offload im-
plementation. This required adding a Spark partition file
receiver specifically targeted for P2P transfer. In the case
of accelerated Spark, for the scan operator, we issue a P2P
read to transfer the data from SSD to FPGA GAM and
once the data transfer is complete we enqueue an OpenCL
compute task to operate on the data in GAM.

7.1 Performance Optimization
An important optimization that is necessary for good per-

formance is to decouple the P2P command queue from com-
pute command queue. This is necessary because we can have
data transfers initiated to the FPGA GAM region through
P2P command queue, while the compute command queue
is being processed on another GAM region. A further opti-
mization is to use asynchronous read for P2P as opposed to
synchronous read so that a single thread can operate on both
P2P and compute command queue. Since Xilinx drivers sup-
port POSIX API for P2P read, we used aio read as opposed
to pread or read [3]. This also enables us to have all our

OpenCL calls as non-blocking and asynchronous, in order
to issue multiple commands to both command queues on
a single thread effectively. This also reduces CPU utiliza-
tion by avoiding polling/busy-waiting. Another optimiza-
tion tool provided by Xilinx is to use the Embedded Run
Time (ERT) option which reduces polling on the CPU side
by moving the polling to the ARM processor in the FPGA.
We will discuss our results with respect to JSON data for-
mat which is one of the predominant row based formats used
in big data analytics.

8. EVALUATION
Our testbed consists of 5 servers with 1 driver node and

4 worker nodes with SmartSSD attached to the PCIe slot.
Each server contains Intel Xeon Gold 6152 CPU operating
at 2.10GHz with 22 physical cores in dual sockets. Each
server contains 128 GB DRAM and the servers are connected
through 10Gbps network. Figure 10 compares performance
of scan heavy TPC-DS queries between vanilla Spark and
Bigstream accelerated Spark in SmartSSD for a single node.
These measurements were made after all the aforementioned
hardware optimizations and the results presented are end-
to-end query time for 200SF(200GB) data. As is observable
from Figure 10, most queries achieve around 6x acceleration
with respect to Spark. The number of Spark executors was
set to 6 with a total executor memory of 100GB. We decided
on the executor count being 6 for one SSD as a comparable
equivalent to one SmartSSD. The top-15 queries are pre-
sented for both cases separately since they are not the same
subset for both of them and the baseline Spark performance
also varies between SmartSSD and SATA connected SSD.
Figure 11 shows results for a 4 node cluster with each node
having 100GB of TPC-DS data totaling 400GB for the clus-
ter. The acceleration numbers here are similar to that of
a single node cluster. In cluster mode, data is distributed
across SmartSSD of each node and scan operation and op-
erators succeeding scan are processed in SmartSSD. Once
the scan stage is complete, shuffle data is also placed in
SmartSSD so that it can be redistributed to other nodes.
The average acceleration across all TPC-DS is 4.08x with
respect to vanilla Spark.

Another important advantage of SmartSSD is lower CPU
utilization which is illustrated through time-line graph of
user utilization obtained through Grafana [2] in Figure 9
for Query 69. The left side of the graph shows CPU utiliza-
tion of executors in our accelerated Spark. The right side
shows CPU utilization of vanilla spark executors. The peak
CPU utilization of our version is less than 30% while that
of Spark is around 90% for the cores executing the query.
Across all TPC-DS scan heavy queries, we observed that
CPU utilization was similarly low for SmartSSD. In produc-
tion environments, with multi-tenancy support, lower CPU
utilization could lead to more workloads being run on the
same machine through different containers.

9. FUTURE WORK
We have presented results that show significant run-time

speedup over Apache Spark, based on our row based de-
sign. In our final product, which is under quality control
and testing, we are using more SSDs in the system and we
are observing that the performance scales across executors

6



Figure 9: CPU utilization - Spark vs XSD

Figure 10: Row Based acceleration results for Top 15 TPC-DS scan heavy queries with SmartSSD

and SmartSSDs. In our future work, we will present com-
prehensive results on columnar formats such as Parquet and
ORC. On the hardware side, we are actively working on in-
creasing the number of templates available in SmartSSDs
by including solutions such as DNN and machine learning
pipelines [20], cryptographic and hashing templates, etc. We
are also working on pushing the frequency of our kernels
along with the number of kernels. On the software side, we
are working on adding support for frameworks like Hive and
Kafka KSQL to take advantage of our hyper-acceleration
layer which now supports SmartSSD as well as traditional
FPGA architectures.

10. CONCLUSION
In this paper, we have explained our framework for accel-

erating Big Data platforms on computational storage. We
chose Samsung SmartSSD which enables performing compu-
tation close to storage and have shown significant query run-
time speedup for TPC-DS benchmarks for row-based format
on SmartSSD, compared to Apache Spark. Our results also
scale when we move from single node to multi-node. Apart

from higher performance, we also gain total cost of owner-
ship (TCO) savings when using our accelerated platform on
SmartSSD. Two main reasons for TCO saving are: 1) CPU
utilization drops dramatically during our accelerated Spark
with SmartSSD, specifically during scan stages. This drop
leads to shorter tenant run-time and enables more container-
ized processes in a multi-tenant environment. 2) SmartSSD
consumes lower power than adding more cores to a proces-
sor which adds up to a significant amount of energy saving
in modern data-centers.

The hardware, that we are working with, is a pre-production
part and we are confident of improving performance with our
next generation of software and hardware IPs targeted for
the production part. The production version of SmartSSD is
a PCIe U.2 attached card, which is more tightly integrated
with improved bandwidth and SSD capacity.

11. ACKNOWLEDGMENTS
We would like to thank Xilinx and Samsung for provid-

ing us access to pre-production parts of Xilinx DSA and
SmartSSD. We would like to thank Gopi Jandhyala, Sebas-

7



Figure 11: 4 node cluster results for Top 15 TPC-DS with 400 GB data with SmartSSD

tian Turullols from Xilinx and Vish Maram, Pankaj Mehra,
Fred Worley and Bob Napaa from Samsung. We would also
like to thank Weiwei Chen, John Davis, Gowtham Chan-
drasekaran, Brian Hirano, Roop Ganguly, Chris Ogle, Chris
Both and Danesh Tavana for support in this work.

12. ADDITIONAL AUTHORS

13. REFERENCES
[1] Computational storage technical work group.

https://www.snia.org/computational, visited
2019-06-02.

[2] Grafana labs. 2018. grafana – the open platform for
analytics and monitoring. https://grafana.com,
visited 2019-06-02.

[3] The open group base specifications issue 7.
https://pubs.opengroup.org/onlinepubs/
9699919799.2018edition/, visited 2019-06-02.

[4] SDAccel development environment help for 2018.3.
https://www.xilinx.com/html docs/xilinx2018 3/

sdaccel doc/creating-rtl-kernels-

qnk1504034323350.html, visited 2019-06-02.

[5] SmartSSD, faster time to insight.
https://samsungatfirst.com/smartssd/, visited
2019-06-02.

[6] TPC-DS. http://www.tpc.org/tpcds/, visited
2019-06-02.

[7] An update on data center fpgas.
https://www.forbes.com/sites/moorinsights/2018/
07/20/an-update-on-data-center-fpgas/

#4fcff99346c2,visited 2019-06-02.

[8] What is a hypervisor. https://www.vmware.com/
topics/glossary/content/hypervisor,visited
2019-06-02.

[9] M. Armbrust, Y. Huai, C. Liang, R. S. Xin, and
M. Zaharia. Deep dive into spark sql’s catalyst
optimizer.
https://databricks.com/blog/2015/04/13/deep-
dive-into-spark-sqls-catalyst-optimizer.html,
visited 2019-06-02.

[10] S. Boboila, Y. Kim, S. S. Vazhkudai, P. Desnoyers,
and G. M. Shipman. Active flash: Out-of-core data
analytics on flash storage. In 012 IEEE 28th
Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–12. IEEE, 2012.

[11] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and
D. J. DeWitt. Query processing on smart ssds:
opportunities and challenges. In Proceedings of the
2013 ACM SIGMOD International Conference on
Management of Data, pages 1221–1230. ACM, 2013.

[12] J. Fifield, R. Keryell, H. Ratigner, H. Styles, and
J. Wu. Optimizing opencl applications on xilinx fpga.
In Proceedings of the 4th International Workshop on
OpenCL, page 5. ACM, 2016.

[13] P. Francisco et al. The netezza data appliance
architecture: A platform for high performance data
warehousing and analytics, 2011.

[14] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon,
J.-U. Kang, M. Kwon, C. Yoon, S. Cho, et al. Biscuit:
A framework for near-data processing of big data
workloads. In ACM SIGARCH Computer Architecture
News, volume 44, pages 153–165. IEEE Press, 2016.

[15] Y. Kang, Y.-s. Kee, E. L. Miller, and C. Park.
Enabling cost-effective data processing with smart ssd.

8



In 2013 IEEE 29th symposium on mass storage
systems and technologies (MSST), pages 1–12. IEEE,
2013.

[16] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A
case for intelligent disks (idisks). ACM SIGMOD
Record, 27(3):42–52, 1998.

[17] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle.
Active disks for large-scale data processing. Computer,
34(6):68–74, 2001.

[18] E. Riedel, G. Gibson, and C. Faloutsos. Active storage
for large-scale data mining and multimedia
applications. In Proceedings of 24th Conference on
Very Large Databases, pages 62–73. Citeseer, 1998.

[19] J. Rosen. Deep dive into project tungsten: Bringing
spark closer to bare metal. jun. 16, 2015. https://
databricks.com/session/deep-dive-into-project-
tungsten-bringing-spark-closer-to-bare-metal,

visited 2019-06-02.

[20] H. Sharma, J. Park, E. Amaro, B. Thwaites,
P. Kotha, A. Gupta, J. K. Kim, A. Mishra, and
H. Esmaeilzadeh. Dnnweaver: From high-level deep
network models to fpga acceleration. In the Workshop
on Cognitive Architectures, 2016.

[21] J. Wang, D. Park, Y.-S. Kee, Y. Papakonstantinou,
and S. Swanson. Ssd in-storage computing for list
intersection. In Proceedings of the 12th International
Workshop on Data Management on New Hardware,
page 4. ACM, 2016.

[22] M. Zaharia, R. S. Xin, P. Wendell, T. Das,
M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica. Apache spark:
A unified engine for big data processing. Commun.
ACM, 59(11):56–65, Oct. 2016.

9


