Accelerating Regular Path Queries using FPGA

Kento Miura
Dept. of Computer Science
University of Tsukuba
1-1-1 Tennodai, Tsukuba
Ibaraki 305-8577 Japan

miura.k@kde.cs.tsukuba
.ac.jp

ABSTRACT

This paper proposes a scheme for accelerating regular-path
queries (RPQs) for directed edge-labeled graphs using an
FPGA. Graphs are quite useful to represent various types
of relationships among different entities and have been used
in diverse fields, such as social networking analysis, linked
open data (LOD), and bioscience. RPQs are queries to re-
trieve pairs of vertices that are reachable through a path
whose labels conform to a user-specified regular expression.
Despite its importance and usefulness, RPQs have not been
paid much attention. In this paper, we attempt to accelerate
such queries using an FPGA (field programmable gate ar-
ray). Specifically, we propose a pipelined process of RPQs by
dividing a query into multiple stages thereby taking advan-
tage of pipeline parallelism. Experimental evaluations show
that the proposed accelerator achieves up to 23.6x faster for
the small dataset and up to 4.61x faster for large dataset
than the comparative method running on CPU.

1. INTRODUCTION

A graph is useful to represent different kinds of data in
real-world applications in particular when one needs to rep-
resent relationships among different entities. Social net-
works, linked open data, and chemical compound networks
are well-known examples.

Given a directed edge-labeled graph, regular path queries
(RPQs) [10] are used to retrieve pairs of vertices that are
reachable through paths whose labels conform to the user-
specified regular expression. RPQs are useful in such ap-
plications where pairs of vertices that are connected via a
specific path. For example, a meta-path is represented as a
regular path, and its occurrences are extracted from a graph
for subsequent tasks [22, 23].

As can easily be imagined, processing an RPQ is expen-
sive in particular when processing large graphs, while the
demand for high-speed processing of large graphs is increas-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and ADMS 2019.
10th International Workshop on Accelerating Analytics and Data Manage-
ment Systems (ADMS’19), August 26, 2019, Los Angeles, California, CA,
USA.

Toshiyuki Amagasa
Center for Computational
Sciences
University of Tsukuba
1—1-1 Tennodai, Tsukuba
Ibaraki 305-8577 Japan

amagasa@cs.tsukuba.
ac.jp

Hiroyuki Kitagawa
Center for Computational
Sciences
University of Tsukuba
1—1-1 Tennodai, Tsukuba
Ibaraki 305-8577 Japan

kitagawa@cs.tsukuba.
ac.jp

ingly growing. FPGA (field programmable gate array) is
a possible way to accelerate RPQ processing. FPGA is a
device that allows users to implement arbitrary logic cir-
cuits by programming dynamically and has recently been
applied to various problems, such as query processing rela-
tional database systems [8], deep neural networks [26], and
graph processing [11]. Despite its low frequency compared
to CPUs, if the device is optimally configured, it is possible
to outperform them.

In this paper we propose a novel scheme for processing
simple RPQs using FPGA. To maximize the performance,
given an RPQ, we divide it into multiple stages according
to path steps, and process the query in a pipelined manner
whereby we can exploit pipeline parallelism. We addition-
ally propose an optimization of pipeline execution to im-
prove the performance further. Experimental evaluations
show that the proposed accelerator achieves up to 23.6x
faster for the small dataset and up to 4.61x faster for large
dataset than the comparative method running on CPU.

This paper is organized as follows. We describe prelimi-
naries of this research in Section 2. Section 3 introduces re-
lated research works on FPGA-based accelerators and RPQ
processing. We explain the proposed scheme in Section 4,
and show the performance study in Section 5. Section 6
concludes this paper.

2. PRELIMINARIES

2.1 Regular Path Queries (RPQs)

Given a directed edge-labeled graph, a regular path query
(RPQ) is a query to retrieve pairs of vertices that are reach-
able via such paths whose label sequences conform to the
user-specified regular expression. More precisely, let G =
(V,E,L,)\) be a directed edge-labeled graph where V is a
set of vertices, E is a set of edges, and L is a set of edge
labels, and A : E — L is a mapping from an edge to an
edge label. Then, a regular path query RPQ R is defined as
follows:

Ru=¢€|l|t"|RoR|RUR|R"

where € is an empty path; ¢ and ¢~ € L are a forward and
backward navigation, respectively; o and U are path com-
position and disjunction, respectively; and R*’ is bounded
path recursion. Given a graph G and a regular path query
R, an evaluation of R over G, denoted as R(G), returns all
pairs of vertices v,w € V such that 1) there exists a path
from v to w in G, and 2) the path expression from v to w

O @
RO

Figure 1: An example of RPQ (R=aobob).

matches to the regular path query R. For example, when
applying an RPQ R = aoaob against a graph G., depicted
in Figure 1, we get:

R(Gez) = {(27 5)}

In this example, the highlighted part is the result of the
query.

In this paper we assume that RPQs are simple, i.e., RPQs
only contain path composition operation for simplicity. Sup-
porting more complected operations is our future work.

2.2 FPGAs

Field programmable gate array (FPGA) is a hardware
where arbitrary logical circuits can be implemented dynami-
cally by programming. Recently, the performance of FPGAs
has been improving significantly, and one can implement
more complex circuits. For this reason, FPGAs have been
used in various fields, such as numerical calculation [20],
image processing [18], etc.

In general, to program an FPGA, a programmer needs
to use a dedicated hardware description language, such as
Verilog [6] or VHDL [1]. In this case, the programmer is
required to be familiar not only with the language but also
with hardware device, which is considered to be a problem
because the number of such experts are limited. Alterna-
tively, we may use high-level synthesis (HLS) [9] whereby
one can generate program circuits on FPGAs by writing a
program in high-level languages such as C/C++ and Open-
CL [3]. In this research, we implemented our circuit on the
FPGA using this HLS.

3. RELATED WORK

3.1 FPGA-based accelerators

Recently, FPGAs have been used to accelerate different
workloads in various problem domains. For example, Si-
dler et al. used an FPGA to speed up queries contain-
ing regular expressions against text strings in a relational
database [21]. Ham et al. developed an FPGA accelera-
tor, Graphicionado [14], to accelerate graph analysis, such
as PageRank [19] and collaborative filtering [7].

In commercial systems, Netezza (now PureData System
for Analytics [2]) from IBM achieved significant improve-
ment on throughput using an FPGA.

3.2 RPQ Processing over RDF and Graphs

In the context of Resource Description Framework (RDF)
and graph processing, RPQs are considered to be an im-
portant class of queries and therefore have been studied by
many researchers. For example, PGQL [25] developed by
Oracle and openCypher [4] support RPQs. Besides, Neo4j
cypher [13] and SPARQL 1.1 [5] also support RPQs.

3.3 Efficient Processing of RPQs

There have been many research works that attempt to
speed up RPQ processing. Their approach can roughly be
categorized into automata-based [16] and index-based [12].

In the former approach, given an RPQ, the automaton
that corresponds to the query is generated, and is applied
to the graph being processed. In [16], more efficient search
using automata is realized by dividing the graph by labels
with low frequency of occurrence in the graph and reducing
the search space. However, this method requires the exis-
tence of labels with low frequency of occurrence, and the
performance depends on whether or not the labels can be
selected appropriately.

To cope with the performance problem of automata-based
approach, index-based approach have been studied. In Path
Indez [12], a dedicated index structure is proposed where all
occurrences of paths up to length k is extracted and stored
in corresponding indexes. Taking Figure 1 as an example,
all paths up to length k£ = 2 is stored in indexes represented
as tables in Table 1. When processing queries, if the given
query is shorter or equal to k, the results can be obtained
just by looking up the indexes; otherwise, the results can
be obtained by joining multiple indexes; e.g., length 4 can
be obtained by self-join of length 2 index. A drawback of
this approach is that the size of index rapidly increases when
increasing parameter k, while join cost dominates when pro-
cessing long RPQs with indexes of small k value.

Table 1: Path Index

(a)k=1
Path | Source | Destination
a 1 5
a 2 4
b 3 5
b 4 3
[¢ 1 3
¢ 2 1
[¢ 5 4
(b) k =2
Path | Source | Destination
aob 2 3
aoc 4
bobd 4 5
boc 3 4
coa 2 5
cob 1 5
cob 5 3
coc 2 3

4. FPGA-BASED ACCELERATION OF RPQS

In this research, we propose a method to parallel pro-
cessing of RPQs using FPGA. The process is divided into
CPU and FPGA part; graph data is stored in disk and are
sent from CPU to FPGA, and a pipeline-based parallelism
is applied on FPGA for speeding up query processing.

4.1 Process Overview

Figure 2 shows an overview of the proposed method. Let
us assume an RPQ R = aobob. The query processing is
performed on both host (CPU) and device (FPGA) sides.
As a preprocessing on host side, the graph is stored on the
secondary storage (HDD/SSD) in such a way that the edges
of the same label are stored in the same file. When process-
ing a query, the host first analyze the query and determines
the labels appearing in the query. Then, the host sends the
query to the device for making it ready to process the query.
Afterwards, the host sends the pieces of stored graph data
to the device for actual query processing.

On the device side, our strategy is to divide the query
into multiple stages according to the path steps included in
the query, and perform multi-way join. More precisely, for
query R = aobob, the edge table corresponding to the label
a and b are fed into FPGA, and they are merged according
to their connectivity. Finally, the result is sent back to the
host side.

HOST FPGA
poTTTTTeTemananeees v [Edgeswitn| ¢TTTTTTTTTETTTTTTETmTEmAAS H
H H label a H H
H ——————"! [Edges witn| [Edges with| [Edges with :
RPQ : acbob ' ! [Eages with label a abel b label b
@ : Graph Data H label b J /
Result E T @

Figure 2: Storage format of graph data.

4.2 Graph Data Storage

As a preprocessing, the graph is divided into different
pieces, and is stored in the secondary storage. More pre-
cisely, since we take an edge-wise join strategy to process
an RPQ, we divide the graph according to edges with the
same label (e.g., a, b, etc.) Also, to make the edge-wise join
easier, we store the same set of edges (with a label) in two
ways; i.e., sorted according to the ascending order of source
or destination vertexes. Figure 3 shows an example of stor-
age of graph in Figure 1. In this example, edges are stored
according to their labels (i.e., a, b, or ¢), and there are two
versions for each label; i.e., sorted according to the source
(*_szc) or destination (*_dst) vertexes.

4.3 Processing on FPGA

4.3.1 Join and Sort Modules

Our basic strategy to process an RPQ using an FPGA
is to take advantage of the pipeline parallelism as much as
possible. To this end, we consider that a (simple) RPQ is a
multi-way join over edges where each join input corresponds
to one of the path step in the RPQ. More precisely, we use
sort-merge join to implement this pipeline, because sort is
suitable for FPGAs and can be executed efficiently [15].

1,5 3,56 1,3
2,4 4,3 2,1

5.4
a_src b_src c_src
2.4 4,3 2,1
1,5 3,5 1,3

5,4
a_dst b_dst c_dst

Storage area

Figure 3: An overview of the proposed scheme

For this reason, we implemented two modules, namely,
join and sort modules as the building blocks of our pro-
posed scheme. Figure 4 depicts a simple illustration of the
modules.

The join module takes as input two list of edges and out-
puts the composed paths if two edges being joined are con-
nected; i.e., the destination of left input is equal to the source
of right input. In this example, edges (2,4) and (4,3) are
joined and (2,3) is output as the result. To perform this
efficiently, we assume that left (right) input is sorted ac-
cording to the destination (source) vertexes of the edges,
thereby making it possible to perform sort-merge join in the
module.

Regarding the sort module, we implemented the merge
sort optimized for the FPGA implementation with reference
to the algorithm described in [15]. This module is necessary,
because the output of join module is not sorted; if we want
to construct a pipeline, the input for subsequent join module
requires the input is sorted according to source/destination
vertexes. In this work, since we construct left-deep join tree,
the sort module sorts the input according to the destination
vertexes.

5,2
2,3 1.3
2.7
. Sorted by
Join Sort Destination node id
Buffer Size = 3
2.4 3.5 2.7
1.5 4.3
1,3
Sorted by destination Sorted by source 5,2
node id node id

(a) Join module. (b) Sort module.

Figure 4: Modules implemented on FPGA.

4.3.2 Processing Pipeline on FPGA

This section shows how to process RPQs on an FPGA
using the the modules described in Section 4.3.1. As already
mentioned above, our basic strategy is to construct left-deep

join tree using the join and sort modules. For example, let
us take an RPQ R =aoboboc, we construct a processing
pipeline as shown in Figure 5.

In the figure, a_dst, b_src and c_src are transferred from
the host to the device and fed into the corresponding join
modules. More precisely, the host first writes these data
onto the global memory (off-chip DRAM) on the FPGA
board. Then each modules can read necessary data from
the global memory. The process proceeds in a staged man-
ner; i.e., as soon as the system activates the first join module,
the results are passed to the next sort module in a streaming
manner, and the sort module stores the received data in its
(sort) buffer. When the buffer becomes full or detects the
end of the join results, it sorts the data in the buffer and pass
them to the join module in the next stage. Notice that sort
is a blocking operator. In other words, a sort can start only
when all input is ready. For this reason, the intermediate
results needs to be pooled in a buffer. The problem occurs
when the buffer is overflowed due to an excessive size of in-
termediate results. In such cases, the intermediate results
in the current (filled) buffer is first sent to the upper join
module, and the remaining intermediate results are sent to
the upper join module afterwords. In fact, the join module
needs to perform join between left input (from sort buffer)
and right input (from the host) for two or more times, and
the right input needs to be fully read repeatedly, which will
affect the performance.

Note that, in the proposed method, we first create on the
FPGA a processing pipeline with predefined length. Given
an RPQ), if its length is shorter than the length of pipeline,
we can process the query without any reconfiguration. Let
consider the example of pipeline in the Figure 5 consisting
of five stages. When RPQ query with length 4 is given, we
can process it with the pipeline without reconfiguration by
1) the first to fourth stages process as explained above and
2) the join and sort module at the fifth stage just pass the
received data to the next module without any modification.

a_dst

5 -
RPQ: acb H HERELE H
Q:ae oboc: c;:z y
—
(o)

Graph Data

Figure 5: Process overview.

4.3.3 Parallelized Pipelining

To make the best use of the FPGA’s performance, it is
quite important to improve the parallelism. When consider-
ing the above mentioned pipeline configuration, as can easily
be observed, the modules in higher stages tend to be inactive
for long period of time until the left input is ready. Such a
situation becomes even worse when processing long RPQs,
because left inputs are processed stage-wisely.

In order to alleviate this problem, we propose a parallel
pipeline configuration as shown in Figure 6, where a pro-
cess pipeline is divided into two parallel pipelines which
are executed in parallel. The example is based on a query

— r—raT

a_dst b_src c_dst b_src

Pipelinel Pipeline2

Figure 6: Configuration using two processing
pipelines

R =aobobocoboa. In the proposed configuration,
we divide the pipeline into two parts, namely, the first half
(R1 = aobob) and second half (R2 = coboa). These partial
RPQs are processed in parallel on the FPGA.

Notice that the results from these pipelines are not com-
plete, because they are based on partial RPQs. To get the
final (correct) results, we need the last join between the re-
sults corresponding to R; and R2. Let us assume that this
final join is performed on the FPGA, the following process
would be needed: 1) the results from two (partial) pipelines
are temporarily stored in the global memory of the FPGA;
and 2) when the partial results are ready, we read the re-
sults from the memory and perform the final join. One of
the major drawbacks of this approach is that the access cost
to global memory is expensive, which will significantly af-
fect the performance. Another drawback is that the size of
intermediate results may not fit in the global memory.

Those having observed, in our proposed method, we de-
cided to perform the final join on the host side using hash
join. Figure 7 shows the overview. In the sequel discussion,
we call the basic serial pipeline configuration serial config-
uration, while the improved parallel pipeline configuration
parallel configuration.

HOST FPGA

Edge Data

H . a_dst
RPQ : acboebocoboa: v | bsre

c_src
. : Graph Data -

: -
: Cb)
:
s
: : : Em
H H '
H ! .
: : N
-
H 0 ' cdst bsrc
:

Figure 7: An overview of parallel configuration.

5. PERFORMANCE EVALUATION

5.1 Experimental Setup

To test the performance of the proposed scheme, we have
conducted several experiments. The experimental environ-
ment is shown in Table 2.

5.2 Dataset

Table 2: Experimental environment.

CPU Intel Core i7-7700K 3.60 GHz x 8
oS Linux version 3.10.0
Memory 31.1GiB
Compiler gcc-4.8.5
FPGA Xilinx Kintex UltraScale FPGA KCU1500
RDBMS PostgreSQL 9.2.24

In this experiment, we used two graph datasets, namely,
advogato [17] and DBLP-Citation-network V10 [24]. Table 3
shows information such as the number of vertexes, and the
details are described below.

Table 3: datasets

dataset #vertexes #edges #label types
advogato 6,541 51,127 3
DBLP 4,850,632 | 38,973,022 6

5.2.1 Advogato Dataset

Advogato is a directed graph created from an on-line com-
munity platform for free software developers. Each edge is
labeled with the trust between the users at the both ends of
the edge.

5.2.2 DBLP-Citation-network V10 Dataset

DBLP-Citation-network is a dataset that contains about
3 million papers extracted from DBLP bibliography. Each
paper contains paper ID, title, authors, cited paper IDs,
venue and so on. In this experiment, we extracted paper ID,
authors, cited paper IDs, and venue, and generated a het-
erogeneous graph consisting of different types of vertexes,

i.e., paper (P), author (A) and venue (V), and edges la-

. iti itten b blishi
beled either A 2“2, p p WY, 4y B, p

published in citing cited by
P vV, P P and P —— P.

5.3 Performance on advogato dataset

In the first experiment, we compare the performance of
the proposed scheme with Path Index 1, an index-based
method for RPQs which is known to be the fastest. The
parameter k, which controls the length of indexed paths, is
set to be 1 < k < 3; i.e., simple RPQs of length up to three
can be answered by just looking up the indexes.

We measured the execution time of RPQs with different
length using different configurations, i.e., serial and parallel
configuration. More precisely, we randomly selected RPQs
of the same length, and computed the average of the execu-
tion times of 10 trials. Note that, for the proposed scheme,
RPQs with the length shorter than three was processed us-
ing serial configuration only, because it is not possible to
divide the pipeline into two. Besides, the sort buffer size for
each sort module was 8,192 edges.

The results are shown in Figure 8. We can observe that,
with the serial configuration, the proposed method was slower
than Path Index when |R| = 2. However, when R| > 3, the
proposed scheme is about 1.72x to 2.31x faster. Further-
more, in the parallel configration (|R| = 4,5), the proposed
method is about 15.3x to 23.6x faster than Path Index.

-
o
>

mm proposed method serial
105 proposed method parallel
B pathindexk =1
Em path index k = 2
104, W pathindexk =3

Elapsed Time (ms)
= =
o o
2 >

._.
<L

Length of R

Figure 8: Performance with advogato dataset.

5.4 Performance with DBLP-Citation-network
V10 Dataset

In this experiment, we conducted experiments using DBLP-
Citation-network V10 dataset, which is larger than advogato
dataset.

As for experimental query generation, we cannot gener-
ate queries in a completely random way due to the fact that
there are some dependencies between edge labels and differ-
ent types of vertexes; e.g., writing o publishing never ap-
pears. For this reason, we chose five typical queries:

q1: writing o written by

q2: writing o citing o written by

q3: writing o published in o publishing o wiritten by
qa: publishing o written by o writing o published in

gs: writing o citing o published in o
publishing o citing o written by

Besides, due to the excessive size of query results, it is
not feasible to enumerate all occurrences of query results.
Instead, we fixed the starting vertex!, and find all destina-
tion vertexes that are reachable via the query RPQ being
processed.

For the comparative method, we could not generate Path
Index because of the size of index became too big (more than
10 GB for k = 2). For this reason, we stored the graph in a
relational database (PostgreSQL) using a table with schema
in Table 4. When processing a query, we convert the RPQ
into an SQL; e.g., g1 can be converted into the following
SQL and executed on the database.

SELECT el.src, e2.dst
FROM edges AS el, edges AS e2
WHERE el.src = 260069 -- This specifies
the starting vertex.
AND el.label_id = O AND e2.label_id = 1
AND el.dst = e2.src;

In this experiment, the size of sort buffer was 32,768 edges.
The results are shown in Figure 9. When using serial
configuration, the performance of the proposed method was
worse than the comparative method. By contrast, with the

In the experiments, we used author “Hiroyuki Kitagawa”

or venue “very large data bases” as the starting vertex.

Table 4: Schema structure of the table in Post-
greSQL

(a) edges (b) labels
src dst label_id label_id label

163954 | 1766548 0 0 writing

1766548 | 163954 1 1 written by
2 publishing
3 published in
4 citing
5 cited by

106

mmm proposed method serial
mmm proposed method parallel
B postgreSQL

Elapsed Time (ms)
= =
°~)

-
o
=

10°

as
Queries

Figure 9: Performance for large graph(DBLP-
Citation-network V10

parallel configuration, the proposed method was about 3.14x
to 4.61x faster than the comparative method with ¢3 and g4.
However, for g5, the proposed scheme took longer execution
time than PostgreSQL. We will discuss this later, but this
is due to the restriction of the current implementation on
FPGA.

5.5 Performance with Varying Buffer Size

In this experiment, we investigated the effect of buffer
size in sort modules using serial configuration. We tested
RPQs of length more than 3, because sort module is not
used when processing RPQ of length 2. We used five buffer
sizes, namely, 2,048, 4,096, 8,192, and 16,384 and 32,768.

108

mm buffer size = 2048
m buffer size = 4096
mm buffer size = 8196
mm buffer size = 16384

=
(=]
T

m buffer size = 32768

oy
(=]
rd

Elapsed Time (ms}
=
(=]
T

102
10t
=]
10 3 4 5
Length of R
Figure 10: Performance changes with buffer
size(advogato)

=
(=]
™

e buffer size = 2048
W buffer size = 4096
I buffer size = 8196
m buffer size = 16384

-
(=]
~

=
(=]
Gl

e buffer size = 32768

-
(=]
C)

Elapsed Time (ms)
-
(=] (=]
= S

-
(=]
T

—
(=]
A

-
(=]
=]

Queries

Figure 11: Performance changes with buffer
size(DBLP-Citation-network V10)

The results are shown in Figures 10 and 11. From the
result, we can observe that the buffer size has little influence
on the performance when the data size is small (advogato).
However, when processing large dataset (DBLP-Citation-
network V10), the buffer size has a significant impact on
the performance.

5.6 Resource Consumption

Table 5 shows the utilization of FPGA resources in the
proposed method. Different rows for sort module represent
the resource usage rate with different buffer sizes (the num-
bers in parentheses next to sortmodule indicate the buffer
size). Besides, the lowest row (“Others”) indicates the re-
source usage rate for the stuffs other than join or sort mod-
ule, e.g., I/O modules from/to global memory, etc. As we
can see from the table, as for LUT and Register, the re-
sources required by each module are less than 1%. On
the other hand, in terms of Block RAM (BRAM) usage,
if we increae the buffer size of sort module, the BRAM re-
source uasage increases, because buffer is implemented using
BRAM.

5.7 Discussion

In the proposed method, we can see that the performance
is strongly affected by the datasets, which differ in size, la-
bel distribution, etc. More precisely, when processing small
dataset (advogato), the performance of the proposed scheme
was better than Path Index even with serial configuration.
On the other hand, when processing large dataset (DBLP-
Citation-network V10), the performance of the proposed
scheme is significantly worse than the comparative method
(PostgreSQL). This is due to the fact that the number of
intermediate results at each join stage increases. In fact,
join modules at the second or higher stages receives the left
input from the sort module of the previous stage. As is ex-
plained in Section 4.3.2, when the intermediate join result
overflows the sort buffer, the sort module send the buffer to
the subsequent join module. Then, the join module process
the left input by performing sort-merge join, which requires
full scan of the right input (containing edges with a spe-
cific label sorted according to the source vertexes). This
process repeats until the sort buffer becomes empty. Obvi-
ously, the join module needs to read entire right input re-
peatedly, which deteriorates the performnace. In summary,

Table 5: FPGA resource usage

| LUT [Register | Block RAM

Join Module 4187 (0.7%) | 4613 (0.4%) | 24 (1.2%)
Sort Module (2048) | 1626 (0.3%) | 1694 (0.1%) | 8 (0.4%)
Sort Module (4096) | 1673 (0.3%) | 1709 (0.1%) | 15 (0.7%)
Sort Module (8192) | 1680 (0.3%) | 1723 (0.1%) | 32 (1.6%)
Sort Module (16384) | 1730 (0.3%) | 1735 (0.1%) | 64 (3.2%)
Sort Module (32768) | 1905 (0.3%) | 1752 (0.1%) | 128 (6.3%)
Others 4311 (0.8%) | 4851 (0.4%) | 0 (0.0%)

the performance of the proposed scheme primarily depends
on whether the size of intermediate results fits in the sort
buffers. This can be confirmed by the experimental results
in Section 5.5. When processing large dataset, the frequency
of buffer overflow at sort modules decreases when using large
sort buffers. Coping with this problem is a part of our future
work.

6. CONCLUSION

In this paper, we have proposed an RP(Q accelerator using
an FPGA. We have used two types of modules, join and sort
modules, and constructed processing pipeline by combining
the modules. To further exploit the parallelism, we have also
proposed the parallel configuration where RPQ pipeline is
divided into two and processed in parallel. We have tested
the performance of the proposed scheme using two datasets,
and the experimental results showd that 1) when the dataset
is small, the proposed scheme is up to 23.6x faster then Path
Index. The current issue is that the performance degrades
as the dataset gets larger. In the future, we plan to develop
a method to address such issues. In addition, we plan to
extend the scheme to support more complecated RPQs con-
taining operators other than composition, such as recursion,
negation, etc.

7. ACKNOWLEDGEMENT

This research was partly supported by the cooperative re-
search with Sky Co. (CPE01017). We would like to also
thank to Prof. Ryohei Kobayashi at the Center for Compu-
tational Sciences, University of Tsukuba for his useful com-
ments to our work.

8. REFERENCES

[1] IEEE P1076 Working GroupVHDL Analysis and
Standardization Group (VASG) . http://www.
eda-twiki.org/cgi-bin/view.cgi/P1076/WebHome.

[2] Introducing the next step in Netezza ' s evolution:
IBM Integrated Analytics System.
https://www.ibm.com/us-en/marketplace/
puredata-system-for-analytics.

[3] OpenCL Reference Pages. https://www.khronos.org/
registry/OpenCL/sdk/1.1/docs/man/xhtml/.

[4] openCypher. http://www.opencypher.org/.

[5] SPARQL 1.1 Query Language.
https://www.w3.org/TR/sparqlil-query/.

[6] Teee standard for verilog hardware description
language. IEEE Std 1364-2005 (Revision of IEEE Std
1364-2001), pages 1-590, April 2006.

[7] D. Agarwal and B.-C. Chen. Machine learning for
large scale recommender systems, 2011.

[8] J. Casper and K. Olukotun. Hardware acceleration of
database operations. In Proceedings of the 2014
ACM/SIGDA International Symposium on
Field-programmable Gate Arrays, FPGA ’14, pages
151-160, New York, NY, USA, 2014. ACM.

[9] P. Coussy, D. Gajski, M. Meredith, and A. Takach.

An introduction to high-level synthesis. Design € Test

of Computers, IEEFE, 26:8 — 17, 09 2009.

I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A

Graphical Query Language Supporting Recursion.

SIGMOD Rec., 16(3):323-330, Dec. 1987.

G. Dai, T. Huang, Y. Chi, N. Xu, Y. Wang, and

H. Yang. Foregraph: Exploring large-scale graph

processing on multi-fpga architecture. In Proceedings

of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA ’17, pages

217-226, New York, NY, USA, 2017. ACM.

G. H. L. Fletcher, J. Peters, and A. Poulovassilis.

Efficient regular path query evaluation using path

indexes. In Proceedings of the 19th International

Conference on FExtending Database Technology, EDBT

2016, Bordeauz, France, March 15-16, 2016,

Bordeaux, France, pages 636—639, March 2016.

N. Francis, A. Green, P. Guagliardo, L. Libkin,

T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg,

P. Selmer, and A. Taylor. Cypher: An evolving query

language for property graphs. In Proceedings of the

2018 International Conference on Management of

Data, SIGMOD °’18, pages 1433-1445, New York, NY,

USA, 2018. ACM.

T. J. Ham, L. Wu, N. Sundaram, N. Satish, and

M. Martonosi. Graphicionado: A high-performance

and energy-efficient accelerator for graph analytics. In

2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages

1-13, Oct 2016.

R. Kastner, J. Matai, and S. Neuendorffer. Parallel

programming for fpgas. CoRR, abs/1805.03648, 2018.

A. "Koschmieder and U. Leser. Regular path queries

on large graphs. In A. Ailamaki and S. Bowers,

editors, Scientific and Statistical Database

Management, pages 177-194, Berlin, Heidelberg, 2012.

(10]

(11]

(12]

(13]

(14]

[22]

[23]

[24]

[25]

Springer Berlin Heidelberg.

P. Massa, M. Salvetti, and D. Tomasoni. Bowling
alone and trust decline in social network sites. In In
Proc. Int. Conf. Dependable, Autonomic and Secure
Computing, pages 658-663, 2009.

R. Mehra and R. Verma. Area efficient fpga
implementation of sobel edge detector for image
processing applications.

L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web,
1999.

C. Schmitt, M. Schmid, F. Hannig, J. Teich,

S. Kuckuk, and H. Kstler. Generation of
multigrid-based numerical solvers for fpga accelerators.
D. Sidler, Z. Istvdn, M. Owaida, and G. Alonso.
Accelerating pattern matching queries in hybrid
cpu-fpga architectures. In Proceedings of the 2017
ACM International Conference on Management of
Data, SIGMOD ’17, pages 403-415, New York, NY,
USA, 2017. ACM.

Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu.
Pathsim: Meta path-based top-k similarity search in
heterogeneous information networks. In In VLDB’
11, 2011.

Y. Sun, B. Norick, J. Han, X. Yan, P. S. Yu, and

X. Yu. Pathselclus: Integrating meta-path selection
with user-guided object clustering in heterogeneous
information networks. ACM Trans. Knowl. Discov.
Data, 7(3):11:1-11:23, Sept. 2013.

J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su.
Arnetminer: Extraction and mining of academic social
networks. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’08, pages 990-998, New York,
NY, USA, 2008. ACM.

O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi.
Pgql: A property graph query language. In
Proceedings of the Fourth International Workshop on
Graph Data Management FExperiences and Systems,
GRADES ’16, pages 7:1-7:6, New York, NY, USA,
2016. ACM.

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and

J. Cong. Optimizing fpga-based accelerator design for
deep convolutional neural networks. In Proceedings of
the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’15, pages
161-170, New York, NY, USA, 2015. ACM.

