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ABSTRACT
In-memory storage engines are known to have higher through-
put and lower latency than their disk-based counterparts.
However, the more expensive and limited size DDR main
memory, hinder their adoption. High capacity persistent
memory (PMEM), which is finally commercially available in
the form of Intel’s Optane DC Persistent Memory Module
(DCPMM), can be the opportunity to mitigate the above
problems. This paper describes practical experience with
PMEM as a memory extension for a commercial in-memory
storage-engine, under the Huawei openGauss database with
its MOT memory engine Interestingly, we find that when
our storage engine is embedded in a fully functional RDBMS
it can exploit PMEM for all data and indexes and maintain
DDR main memory performance. However, in micro bench-
marks we needed to throttle the use of PMEM to prevent
it from becoming a bottleneck. In this paper we present
our hands-on experience with PMEM, its good results on
RDBMS and its performance on a microbenchmark compared
to DDR.

1. INTRODUCTION
GaussDB [5] was announced in 2019 as a distributed rela-

tional database management system, followed by July 2020
open-source release of openGauss [6, 4] as a non-distributed
(single-machine) community version of the closed-source
GaussDB. Influenced by emergence of memory-optimized
databases, such as Microsoft Hekaton [2], MemSQL [11],
SAP HANA [9] and works in the art such as [13, 17, 18],
we developed a high-performance memory-optimized storage
engine, that is pluggable into the openGauss envelope.
openGauss in-memory storage engine, named Memory Op-

timized Tables (MOT), is described in [1]. MOT was created
to harness the increasingly larger amount of main mem-
ory and processing cores for online transaction processing
(OLTP). This new storage engine is integrated seamlessly in
GaussDB.
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Limitations of memory channels and DIMM slots per CPU
leads to over provisioning of CPUs (sockets) just to reach
the required memory capacity. For example, with Optane
DCPMM [7, 12, 15] a 2-socket server can reach a total of
12TB memory (6 TB per socket), previously only possible
with 4 or 8 socket servers. While DDR capacity reached
physical boundaries, PMEM size is expected to grow in the
near future. DDR cost is already up to 3 times higher per
GB of memory on ultra-large (128-256GB) DDR DIMMs
over commodity-size (16-64GB) DDR DIMMs with up to
60% savings of total server cost.
PMEM is not yet a simple replacement to DDR, and

it has weaknesses and Idiosyncrasies [3] which must be
considered to maintain performance. It is expected that
other PMEM technologies (such as STT-RAM, memristor,
ReRAM, NVDIMM), with highly variable characteristics,
will be commercially shipped as PMEM in the near future,
and DCPMM is also improved frequently with new revisions.

Contribution: We present a comparison between the
performance of PMEM and DDR, and apply the results to
the use of PMEM as volatile memory for data and indexes
in MOT. Failure atomicity is out of the scope of this paper.

2. BACKGROUND
Optane DCPMM is Intel’s PMEM, and the first incarna-

tion of persistent byte-addressable memory in commercial
hardware with large capacity. Previous solutions, including
battery attached were always limited by capacity.
The CPU memory controller uses the DDR-T protocol

to communicate with DCPMM. DDR-T operates at cache-
line (usually 64B) granularity and has the same interface
as DDR4 but uses a different communication protocol to
support asynchronous command and data timing. Access to
the media (3DXPoint) is at a coarser granularity of a 256B
XPLine, which results in a read-modify-write operation for
stores, causing write amplification.
In [16] they focus on DCPMM characteristics, mainly in

the DBMS perspective, under several PMEM configurations
with micro-benchmark tools. Other, pre-hardware papers
[14], are also using PMEM as a monolithic block of memory,
possibly configured as volatile with DDR cache. Unfortu-
nately, this monolithic approach does not yield performance
on the current version of PMEM hardware [8]. The exclu-
sive PMEM is too slow, having too low bandwidth, while
memory-mode sounds good in theory, but when tested on
hardware, shows to be slow as it introduces arbitrary NUMA



Figure 1: Testing the performance of PMEM, DDR and Cache interaction

accesses that are not in software control, and undermine
performance.
When considering PMEM latency, it is important to note

the effects of caching, which is the advantage of PMEM over
block devices. Caching is accelerating access by orders of
magnitude, but at the same time, it is unpredictable as evic-
tions from cache to PMEM can cause arbitrary delays. In
Section 3.1 we make an effort to understand the interaction
of PMEM, DDR and cache.

Our goal: Maximal allocation of data and indexes on
PMEM while maintaining acceptable performance.

3. PMEM AND DDR IN PRACTICE
First we experiment to see how DDR compares to PMEM

on different access patterns, and how different mixes of
PMEM and DDR compare to pure DDR. We do not in-
vest in theoretical calculations of latency and bandwidth,
and instead consider practical results.

3.1 PMEM and Cache
We conduct all experiments, both here and in Section

4, on a dual-socket server with Intel Xeon Platinum 8260L
CPUs. Each socket has 22 physical cores, 22 hyperthreads,
and is also populated with six 32GB Micron DDR4, and
four interleaved 256GB Intel Optane DC Persistent Memory
modules, combining to 1TB of PMEM. We run Centos 7.9
on the server.

To understand the actual latency of PMEM in OLTP and
how it interacts with cache and DDR we devised the following
test that is depicted in Figure 1:

• Two large memory segments of 10GB are allocated, one
on local PMEM (Sp) and the other on DDR (Sd).

• Each segment hosts ten buffers, B0...B9 where PMEM
Bk starts at (Sp + k ∗Offset) and DDR Bk starts at
(Sd + k ∗Offset).

• In phase j of the test we access an AccessSize in
B0[j ∗ Step]...B0[j ∗ Step] for read or for write. After
the access we place a delay of 0 or 20 cycles to simulate
DBMS work.

• We try different mixes of PMEM and DDR by placing
B0...Bm on PMEM and Bm+1...B9 on DDR.

• In the beginning we execute the test with all buffers in
DDR and use it as the reference time Tddr.

• Then we traverse different mixes of PMEM and DDR,
i.e. k buffers from PMEM and 10 − k buffers from
DDR, and measure the total time of traversal, Tmix.

• The graphs in Figure 2 presents Tmix/Tddr for a specific
workload

We use plain, no-flush writes, however we tried the copy
also with non-temporal writes, as [3] suggests that not flush-
ing the cache can in fact be detrimental to bandwidth when
using PMEM with a built-in prefetcher. In our test, using
the non-temporal writes made PMEM 3 times slower, and
as we are not interested in persistence for this use-case, we
removed it from the graph for readability.

The green squares (13, 8, 3) in Figure 1, represents accesses
number A13, A8 and A3 which access the same address. In
fact, each address is accessed once per buffer that participates
in the test. The number of cachelines accessed between two
consecutive accesses to the same address can be calculated
as follows:

σ = ((((Offset/Step) ∗Access Size) ∗Buffers) − 1) (1)

The test is used to emulate non-sequential access (Offset
between buffers and Step inside the buffers), with known
number of accesses per address (Buffers) and known amount
of memory accessed between consecutive accesses to the
same address. The special property of the test compared to
looping on the same address range is that L2 cache misses
are distributed uniformly, and we control the amount of data
scanned by the test and the rate of L2 cache hits vs. L2
cache misses.
The results of the test are presented in Figure 2. A line is

RD (read) or WR (write) followed by the number of cycles we
wait ("work")between copies. To eliminate noise we verify the
executing thread and the PMEM reside on the same socket.
This is a latency test and not a bandwidth test as we test
the optimal performance per operation. If multiple threads
will run concurrently, when bandwidth is saturated threads



(a) Hot index (b) Hot rows

(c) Cold index (d) Cold rows

Figure 2: Index and rows access patterns for hot and cold usage types

will start waiting for each other. We see the bandwidth limit
in later benchmarks.
We use 10 buffers and emulate four access patterns that

are common in a database workload:

• Hot: When σ < cache size where the L2 cache line
size is 30.976MB. in our test we set the offset to 64KB.
In this access pattern, in steady state, i.e. after the
cache is full, in each phase the last access to PMEM
and the last access to DDR generate cache misses.

• Cold: In cold access patterns σ > cache size so each
access to PMEM or DDR generates a cache miss. For
this test we use an offset of 32MB.

• Index: Access size is one cache line which is typical to
index traversals. Specifically we use a Step of 1024 and
access size of a single cache line.

• Row: Rows in TPC-C are few hundreds of bytes, so to
emulate row access we use a step of 1024 and an access
size of 512.

In Figure 2 we present the performance of workloads that
mix the above access types, i.e. hot and cold accesses to
indexes and rows. We assume these access types form any

database workload so understanding their behavior will help
us to analyze the performance of real workloads in Section 4.

Theoretically PMEM writes are 3x slower than PMEM
reads while DDR reads and writes are symmetrical so we
expect to see this in the results. However the actual results
on real system are more involved and the test gives us the
following insights:

• Hot accesses are not benefiting from mixing with DDR.
This is expected as we pay a cache miss only for the
first access to an address and the rest of the accesses
are within the cache so they perform like DDR.

• In hot index, compared to DDR, writes perform bet-
ter than reads, while in hot rows reads are closer to
DDR performance than writes even when the writes
are followed by a delay.

• Cold accesses are accelerated relative to the amount of
DDR in the workload. in addition we see two phenom-
ena:

– Cold writes to indexes are slower than cold writes
to rows.



– While in cold indexes delays make PMEM per-
formance closer to DDR, in rows, without delays
PMEM is closer to DDR performance.

Summary: We see that cold accesses can be an order of
magnitude slower on PMEM. However accessing hot objects
and adding a few cycles of work outside the access brings
PMEM much closer to DDR performance. A commercial
DBMS is performing work in DDR between rows and index
accesses that mitigate PMEM higher latency.

3.2 Mixing PMEM and DDR
The concurrency control of MOT is OCC which means

every accessed row is kept in a private copy until commit,
and every uncommitted update is done on this copy. In
commit, the row is locked, its version is validated and then it
is copied back to the shared location. All the private copies
are allocated from DDR.
For DDR allocation we are using jemalloc. For PMEM

we use memkind_create_pmem to create memory pools in
PMEM and than use memkind_malloc and memkind_free
to allocate and release PMEM. In commit, after validation,
we use pmem_memcpy to copy the memory to its shared desti-
nation with no flush.

4. EVALUATION
In this section we first evaluate MOT performance in

PMEM when it is embedded in GaussDB, a fully functional
SQL DBMS. Then we use microbenchmarks to analyze MOT
stand alone, both when it is all in PMEM and with a combi-
nation of PMEM and DDR allocations.

4.1 DBMS Benchmark

Figure 3: BenchmarkSQL Full TPC-C

To compare the performance of MOT inside GaussDB
when all tables and indexes are deployed on PMEM to its
performance on pure DDR we execute TPC-C by the stan-
dard BenchmarkSQL [10] tool. This benchmark includes five
transactions which operate on nine different tables.
The results of our DBMS benchmark are presented in Fig-

ure 3. We add threads from the first socket and then from
the second socket until we use all 88 hardware threads of
the machine. When using only PMEM0(the 1TB which is

located in the first socket), we get very close to DDR per-
formance until thread 44 and than the second socket is not
adding to the performance. However, when we add PMEM1,
which is connected to the second socket, we manage to get
almost DDR performance all the way to 88 clients. We make
all even threads allocate from PMEM0 and all odd threads
allocate from PMEM1, so, for example, the second thread
which is on the first socket allocates from PMEM1. Figure 3
shows us that NUMA is not a factor here and when there
is enough bandwidth the PMEM gets DDR performance in
the full DBMS.

Summary: An industrial DBMS such as GaussDB, is
incorporating an SQL engine and a logging and replication
mechanism, and as can be expected from the results in
Section 3.1, and as demonstrated in the DBMS results that
are presented in 3, this allows PMEM to reach DDR speed.
In fact, we see that the limitation of the scalability of a full
DBMS workload on PMEM is not the latency, as when there
is enough bandwidth, the DBMS is as fast on PMEM as it
is on DDR.

4.2 Microbenchmark
All experiments in this section use the 22 cores, with

2 hyperthreads each, of one socket. As a full TPC-C mi-
crobenchmark is not scaling even to one socket, we focused
on that case.
The microbenchmark we use to create Figure 4 is using

MOT to perform all the accesses of standard TPC-C, and
even pass the standard TPC-C consistency tests. However
all transactions are prepared before execution and call MOT
storage engine API directly to eliminate all overheads of the
SQL engine and measure hardware potential. Each line name
in a graphs in Figure 4 stands for the data that is maintains
in PMEM, i.e. index, rows, both (all) or none. If the suffix
is 1 only the 1TB PMEM0 is used, and if it is 2, all even
threads use PMEM0 and all odd threads use PMEM1.
These lines are only one option of splitting the allocations

and it is also possible to place only specific tables in PMEM
or only index leafs or any other policy, as the mixed allocation
is transparent to the transaction execution. All workloads
are combined from the 5 TPC-C transactions:

• Payment which is mostly updating rows with one insert.

• NewOrder which performs a lot of inserts.

• StockLevel and OrderStatus which are read only.

• Delivery which is writing rows and deletes from indexes.

Each graph measures a different workload:

• Figure 4a: The standard TPC-C mix 0f 45% Payments,
43% NewOrders, 4% StockLevel, 4% OrderStatus and
4% Delivery.

• Figure 4b: More read oriented than the standard, with
25% Payments, 23% NewOrders, 24% StockLevel, 24%
OrderStatus and 2% Delivery.

• Figure 4c: Only NewOrder transactions.

• Figure 4d: Only Payment transactions.

Here are some of the insights we can draw from the results
in Figure 4:



(a) Standard TPC-C mixture (b) Read oriented TPC-C

(c) Only NewOrder (d) Only Payment

Figure 4: TPC-C Microbenchmark Performance

• In all workloads using the two PMEM modules gives
performance advantage already with 11 threads. Even
though PMEM1 is on the remote socket, the added
bandwidth is boosting execution speed, and the NUMA
effect is not stopping scalability.

• Putting only the indexes on PMEM is faster than
putting only the rows on PMEM. The reason is both
that index accesses are shorter and that the internal
nodes are hot and mitigate the cache misses from the
leafs. Indexes are only 30% of the DB size, so if only the
indexes are on PMEM we do not get a good utilization
of PMEM.

• Figure 4b, is mostly read, and as there are fewer
NewOrder transactions, i.e. less inserts, the working
set is smaller. As a result even when all data and in-
dexes reside on PMEM execution speed is comparable
to DDR.

• Payment performance in Figure 4d shows that putting
only the index on PMEM and putting only the rows
on PMEM have the same performance with one or two
PMEM modules up to 22 threads and than the second
PMEM starts to give benefit. However, when both rows
and indexes are on PMEM (all), the second module

benefit is visible already with 11 threads, as bandwidth
limitation is reached earlier. In the NewOrder bench-
mark at Figure 4c the second PMEM is improving
performance already with 11 threads. The reason is
that NewOrder is making a lot of inserts and manip-
ulates much more memory then Payment, and as a
result the bandwidth barrier is reached faster. Again
we see that the bandwidth of the PMEM determines
the performance.

Summary: When working in hardware speed, PMEM is
not fast enough to replace DDR in all workloads. However,
if there is enough locality or PMEM is blended with enough
DDR, we can get close to DDR performance while allocating
a significant amount of data on PMEM.

5. CONCLUSION
In this paper we evaluated the usage of the newly available

persistent memory as a volatile extension to main memory for
MOT, an in-memory storage engine of an OLTP database.
When embedded in the fully functional GaussDB DBMS
PMEM preserves DDR performance and will allow using
PMEM, a much larger and cheaper memory, without a per-
formance loss. However, in microbenchmarks we see that
this generation of PMEM is not a transparent replacement



for DDR as its lower bandwidth and higher latency can slow
execution and limit scalability. However, when used in the
right dosage it can extend memory size with only a small
performance hit also there. In the future, as faster PMEM
products will appear, we expect PMEM to be even more
useful for in-memory databases.
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