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ABSTRACT

In recent years, there has been a demand for using inexpensive
general-purpose server-based storage in a wide range of applica-
tions. To use server-based storage in legacy applications such as
databases and virtual desktop infrastructure where random access
is dominant, it is important to enable low data access latency. Be-
cause common server-based storage uses erasure coding (EC) to
reduce the capacity overhead of redundant data, the degraded write
response time of EC data becomes a performance issue. The prior
studies improve the write response time of server-based storage
by storing frequently accessed data with replication that enables a
smaller response time than EC. However, the difference in response
time between replication and EC causes unstable write response
time and leads to the usability degradation of target applications.
We propose dynamic redundancy control with delayed parity up-
date, which asynchronizes parity updates of EC data to achieve
stable write response time for server-based storage. The proposed
method redirects the write request for EC data to the replicated
differential data and achieves the equivalent write response time
with the replication. Our evaluations confirmed that our proposed
method reduces the 99-percentile write response time to one-eighth
of the conventional method and enables the stable write response
time in server-based storage.

1 INTRODUCTION

With the progress of cloud computing environments, there is a
trend of migrating legacy applications such as database (DB) and
virtual desktop infrastructure (VDI) to cloud computing environ-
ments [11, 15]. In cloud computing environments, a large number
of commodity servers form a shared resource pool of computing
and storage and dynamically allocate those resources to applica-
tions. The cloud computing environments enable cost reductions
compared with legacy systems using dedicated servers and storage
systems.

Server-based storage used in a cloud computing environment
is also required to support those legacy applications. Server-based
storage is an inexpensive and scalable storage system consisting of
a large number of commodity servers aggregated over a network
[20, 23]. Server-based storage achieves the high throughput and
high reliability required in cloud computing environments by dis-
tributing data among many servers and making them redundant.
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However, the network distributed architecture of server-based stor-
age tends to be disadvantageous in terms of random performance.
Large network delay during read and write processing degrades
the random performance of server-based storage. Traditionally, a
legacy application uses dedicated storage appliances or directly at-
tached storage (DAS) of the server where the application runs. The
storage appliances and DAS have been improved in random per-
formance to adapt to legacy application workloads where random
access is dominant. By contrast, traditional server-based storage
is unsuitable for legacy applications because of its low random
performance.

Dynamic redundancy control (DRC) has been proposed as a
method to improve the random access performance of server-based
storage [5]. DRC alleviates the performance disadvantages of server-
based storage by storing data in the same server as applications
rather than distributing data over the network. In addition, DRC
uses high-performance replication for frequently accessed data and
capacity-efficient erasure coding (EC) for infrequently accessed data
as a redundancy method. By dynamically controlling redundancy
methods based on data access characteristics, DRC achieves high
random performance while maintaining the capacity efficiency of
conventional server-based storage.

However, DRC still has a performance issue of poor write re-
sponse time for EC data. DRC enables a small write response time
for replicated data. However, the write response time for EC data
remains large because of the overhead of updating parity data. Be-
cause of the difference in write response times between replication
and EC, the access response time for applications also becomes un-
stable. In large-scale systems, the unstable response time of storage
access leads to usability degradation and becomes a problem [3].

In this paper, we propose dynamic redundancy control with
delayed parity update (DRC-DPU) to improve the degraded write
response time for EC data in DRC. DRC-DPU improves the write
response time by performing parity update asynchronously with
write request processing. DRC-DPU redirects write requests for
EC data to replicated differential data so that it can merge the
differential data to EC data later in the background. Furthermore,
DRC-DPU consolidates parity updates for the same EC data to
reduce the overhead of parity updates by delaying the differential
data merge for frequently accessed data.

To confirm the effectiveness of the proposed method, we con-
ducted performance evaluations using the synthesized workload.
The evaluations showed that DRC-DPU reduces the 99-percentile
write response time to one-eighth of DRC and enables the sta-
ble write response time in server-based storage. Furthermore, we
evaluated the effectiveness of the proposed method in reducing the



number of parity updates and the metadata capacity overhead using

the real-world workload. The evaluations showed that DRC-DPU

reduces up to 20% parity updates and consumes less than 0.1% of

total capacity for the metadata under the real-world workloads.
The main contributions of this paper are listed as follows.

e We propose a method to improve the degraded write re-
sponse time of EC data in DRC by asynchronizing parity
updates of EC data.

e We propose a method to reduce the EC overhead by consoli-
dating parity updates for the same EC data.

e We demonstrate that our proposed method achieves a better
write response time than conventional methods.

e We demonstrate the effectiveness of our proposed method
in parity update reduction and metadata capacity overhead.

The remainder of this paper is structured as follows. In Section 2, we
introduce the background knowledge of our study. In Section 3, we
describe our motivation and approaches. In Section 4, we present
the design of DRC-DPU. In Section 5, we present the evaluation
results. In Section 6, we provide the related work of our proposal.
In Section 7, we conclude the paper.

2 BACKGROUND

There is a trend of using server-based storage as back-end storage
of legacy applications such as DB and VDI [11, 15, 27]. This section
provides background knowledge of the use of server-based storage
in legacy applications. Then, we discuss conventional approaches
for improving the random performance of server-based storage.

2.1 Applying Server-based Storage to Legacy
Applications

Server-based storage is a storage system that consists of a large
number of general-purpose commodity servers. Server-based stor-
age achieves high throughput and high reliability by distributing
and redundantly storing data among servers. Server-based storage
uses commodity servers, making it possible to build a salable stor-
age system at a lower cost than conventional dedicated storage
appliances. Server-based storage is becoming more common in the
cloud computing environments and also in on-premise enterprise
systems as a practical alternative to expensive storage appliances
[21, 22].

With the proliferation of server-based storage, the use of server-
based storage has also expanded from traditional cloud applications
such as data analysis and archiving to legacy applications. As a
result, server-based storage must support legacy applications.

Server-based storage usually stores data among servers over
the network in a redundant and distributed manner. Parallel ac-
cess between servers and service fail-over in the case of a server
failure yields high throughput and fault tolerance on unreliable
commodity servers. However, in terms of access response time, data
distribution and redundancy over the network are disadvantageous
to conventional storage appliances and DAS. Network communica-
tion and redundant processing prolong access response time and
deteriorate random access performance.

Another issue with server-based storage is the decreased capacity
efficiency because of data redundancy. Early server-based storage
used three-way replication as a redundancy method for unreliable
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Figure 1: DRC Overview

commodity servers [20]. Three-way replication requires three times
the original capacity to hold two replicas of the same capacity as
the original data. To improve capacity efficiency, many distributed
storage implementations adopt EC [4, 9, 10]. EC constructs a code
from an arbitrary number of data symbols and an arbitrary number
of parity symbols. EC improves capacity efficiency by increasing
the ratio of data to parity data [19].

Although EC enables high capacity efficiency, write performance
degrades because parity updates become another performance issue.
When a part of an EC stripe is updated, the parity data also need to
be partially updated. Updating partial parity data requires reading
the old data and the old parity from disks, calculating the new
parity, and writing the new parity data to disks. This parity update
process involves a considerably large amount of processing. Thus,
the processing delay and processing load degrade the random write
performance further.

The low random performance of server-based storage becomes
a problem when using server-based storage in legacy applications
where random access is dominant.

2.2 Conventional Approaches

2.2.1  Dynamic Redundancy Control. DRC has been proposed as a
method to improve the random performance of server-based stor-
age [5]. DRC is a redundancy control module that makes local data
in each server redundant between servers. DRC places an appli-
cation and its data on the same server and reduces the overhead
of network communication. In addition, DRC also dynamically
switches the data redundancy method between replication and EC,
depending on the performance requirements and workload charac-
teristics. DRC achieves high capacity efficiency while maintaining
high performance. Figure 1 shows an overview diagram of DRC.
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Figure 2: EC Write Methods

In DRC, two or more servers form a replication pair and replicate
local data to each other. DRC divides a file into 512 KB fixed-length
chunks and switches the redundancy method of each chunk be-
tween replication and EC. DRC copies local files to one or more
other servers for replicated data, whereas it also applies EC to
chunks in the local files of multiple servers to reduce the amount
of redundant data. DRC records the number of write accesses for
each chunk and reduces the capacity of redundant data by encoding
chunks with high update frequency. DRC keeps frequently accessed
chunks as replicated data to mitigate the degradation of random
write performance caused by EC.

Furthermore, DRC reduces network communication during meta-
data access by storing the metadata of the EC configuration in the
local file system. DRC stores metadata of chunk and parity configu-
ration in the custom file metadata, which is an extension of the local
file system [6]. By storing metadata in the local file system, DRC
avoids the metadata server becoming a performance bottleneck as
in conventional methods [7, 25].

2.2.2  EC Write Optimizations. Several EC write optimizations have
been proposed to improve the random write performance of EC.
In the following, we describe the naive method of EC write and
explain two other prior methods: parity logging [2] and speculative
partial write (SPW) [27].

Naive method. In EC, parity data are calculated from original
data and the coefficient matrix A = [a;;],,,xr With the following
equation [19].

(P o) = Aldr - dm) (1)

where p, represents the n-th parity data symbol, and d), repre-
sents the n-th data symbol.

When updating EC data, parity data of the same code must also

be updated at the same time. If the new data do not cover the

entire data of an EC stripe, the parity data cannot be calculated

only from the new data. In that case, the delta of the parity data is
calculated from the new data and the old data for linear codes such
as Reed-Solomon codes as follows.

Apj = ajj X Ad; (2)

where Ap; denotes the difference between the old p; and the

new pj, Ad; denotes the difference between the old d; and the new

d;, and ajj € A. The new parity can be obtained by adding Ap; to
the old p;.

Figure 2a shows the process flow of the naive method. The figure
shows the communication between the servers when the applica-
tion performs a partial write to EC data stored in Server A. Server
A, which receives the write request from the application, reads the
old data from the disks and calculates Ap;. Then, Server A sends
Apj to Server B where the parity data are stored. Then, while the
new data are written to the disks in Server A, the new parity data
are calculated from the old parity data and Ap; and written to the
disks in Server B.

Parity Logging. Parity logging eliminates the need to read the old
parity data from the disks in the naive method by logging the delta
data of old and new parity data [2]. The failure recovery process
recovers parity data from the old parity data stored on the disks
and the delta log of parity data. Parity logging reduces the overhead
of parity updates by reducing the number of disk reads. Figure 2b
shows the processing flow of parity logging.

As the figure shows, Ap; is logged without reading the old parity
on Server B. Parity logging avoids reading the old parity data from
the disks and allows faster response time compared with the naive
method.

Speculative Partial Write. SPW eliminates the need to read old
data from the disks in parity logging by logging new data instead of
the delta of parity data. When a failure occurs, the failure recovery
process uses Equation 2 to calculate the sequence of Ap; from the



logged new data in order. The failure recovery process calculates
the latest parity data by adding all Ap; to the old parity data stored
on the disks. If the first data are not logged on the parity server
when new data are logged, SPW reads the old data from the disks
and logs them with the new data. If the first data are logged in the
parity server, SPW does not need to read the old data from disks,
and the response time improves. Figure 2c shows the process flow
of SPW.

Here, Dy indicates the first data. SPW behaves differently de-
pending on whether Dy exists on Server B. If Dy already exists on
Server B, SPW handles it as a speculation success and does not read
the old data from the disks. By contrast, if Dy does not exist on
Server B, SPW handles it as a speculation failure. SPW reads the
old data as Dy on Server A and sends it to Server B. In the case of
a speculation success, reading old data becomes unnecessary on
Server A, and response time improves. However, in the case of a
speculation failure, another log write is required on Server B, and
the response time degrades.

SPW is considered to be effective in real-world workloads where
high write locality is expected.

2.3 Challenge

DRC improves the random access performance of server-based
storage. DRC reduces the overhead of network communication by
storing data in the local storage of servers. DRC also reduces the
number of writes to EC data by encoding data with low-access
frequencies. These improvements result in high throughput and
lower average response time.

However, the write response time of EC data in DRC is consider-
ably worse than replicated data because of the overhead of parity
updates. DRC uses the naive method for the parity update process;
therefore, the write response time of EC data is much worse than
that of replication. One possible solution is to use parity logging or
SPW instead of the naive method.

As a preliminary experiment, we evaluated the write response
time of the conventional methods. In the preliminary experiment,
we evaluated the difference in write response times of the naive
method, parity logging, SPW, and DRC compared with replication.
For the experiment, we implemented parity logging and SPW to
the DRC prototype [5]. We measured the cumulative distribution
function of write response time in the same configuration as in
Section 5.1.1. We used fio [1] for benchmarking. One thread issued
8 KB random writes to a 48 GB file. In DRC measurements, 20% of
the data were encoded into EC, and therefore 20% of the accesses
were issued to the EC data, and 80% of the accesses were issued to
the replication data. Figure 3 shows the evaluation results.

The write response time of DRC is equivalent to replication for
80% of writes to replicated data and close to the naive method for
the remaining 20% of writes to EC data. Although parity logging
and SPW show better response time than the naive method, they
are much worse than replication.

As shown, even with the prior EC write optimizations, the write
response time of EC data is considerably degraded compared with
replication. Even if DRC uses these conventional methods, the poor
write response time of EC data remains an issue. There remains a
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Figure 3: Write Response Time Comparison of Conven-
tional Methods

challenge to improve the write response time for EC data to the
same level as the write response time for replicated data.

3 MOTIVATION AND APPROACHES

We aim to solve the problem of the degraded write response time
of DRC and enable stable storage access in server-based storage.
The goal of this study is to make the write response time of EC data
in DRC equivalent to replication.

We take the following two approaches to achieve the goal.

Redirecting EC Writes to Replicated Differential Data. The first
approach introduces redirecting control of write requests for EC
data to the replicated differential data. This approach enables the
delayed parity update by asynchronously merging the difference
data to the EC data. By responding immediately after updating the
replicated differential data, this approach makes the write response
time of EC data equivalent to that of replication. Furthermore, the
proposed method controls the amount of EC data to compensate
for the capacity increase caused by the differential data.

Parity Update Reduction Using Temporal Write Locality. The sec-
ond approach uses the temporal write locality to reduce the number
of parity updates in the EC write processing. This approach reduces
the number of parity updates by consolidating parity updates to the
same EC data by delaying the differential data merge for frequently
accessed data. This approach reduces the overhead of parity up-
dates and reduces the negative impact of the EC overhead on write
request processing.

4 DYNAMIC REDUNDANCY CONTROL WITH
DELAYED PARITY UPDATE

In this section, we propose DRC-DPU to improve the degraded
write response time of EC data in DRC.

4.1 Overview

DRC-DPU improves the write response time of EC data by asyn-
chronizing parity updates. Figure 4 shows an overview diagram of
DRC-DPU.
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Figure 4: DRC-DPU Overview

DRC-DPU is a stackable module on top of the local filesystem
in the same way as DRC. One implementation of DRC-DPU is a
filesystem-in-the-user-space (FUSE)-based module with the Linux
filesystem such as ext4 or XFS [12, 13, 24]. It uses the standard Linux
interface for communication with the Linux filesystem, enabling it
to run on any commodity server that supports Linux and FUSE.

DRC-DPU adds controls called “redirect on write” and “differen-
tial data merge” to DRC to enable asynchronous parity update.

In redirect on write, DRC-DPU redirects write for an EC chunk
to a special file called the differential file. DRC-DPU improves the
write response time by responding to the application immediately
after writing the new data to the differential file.

In differential data merge, DRC-DPU asynchronously merges
the differential data in a differential file to the EC chunks. DRC-
DPU retains a certain amount of differential data and consolidates
multiple parity updates for the same EC data to reduce the number
of parity updates. As with traditional write buffer techniques, dif-
ferential data merge takes advantage of temporal write locality of
the real-world workload [8, 18].

Figure 5 shows the entire processing flow of DRC-DPU.

In the following, we explain the details of the redirect on write
and differential data merge.

4.2 Redirect on Write

DRC-DPU redirects a write request to an EC chunk to the differen-
tial file. The differential file is a file for storing differential data of
EC chunks. The differential file is prepared for each user file that
has EC chunks, and the entity is an empty regular file. DRC-DPU
guarantees the reliability of the differential data by replicating it
to a replica file on the replication pair. DRC-DPU uses a differen-
tial bitmap to record the existence of differential data for each EC
chunk. Figure 6 shows the data layout of DRC-DPU.

DRC-DPU uses the custom file metadata [6], which is an ex-
tension of the Linux standard file metadata, to manage metadata
of the differential data. The custom file metadata is additional file
metadata of arbitrary size for user files. The custom file metadata
is stored in a file called the metadata file. DRC-DPU stores the
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Figure 5: Flow of Delayed Parity Update

file handle of the differential file and the differential bitmap in the
custom file metadata for reading and writing the differential data.

DRC-DPU subdivides a 512 KB chunk, which is the management
unit of the DRC, into 4 KB pages and manages the differential data
on a page basis. DRC-DPU writes the differential data of the EC
chunk to the differential file with the same file offset and size. The
differential bitmap is a bitmap that records the presence of differ-
ential data for each page of the chunk. The differential bitmap is a
128-bit bitmap with bits for each 4 KB page that makes up a 512 KB
chunk. DRC-DPU turns on the corresponding bit of the differential
bitmap when the differential page is added to the differential file.

In addition, DRC-DPU performs read-modify—write processing
for writes smaller than the page size. When DRC-DPU receives
a small write to a page that does not have the differential data,
it complements the rest of the data in the page with the read-
modify—write processing. In the read—modify—write processing,
DRC-DPU reads the old data of the written page from the EC chunk,
combines it with the new data, and writes it to the differential file
as a differential page.

The read-modify-write processing causes a performance over-
head. The number of the read—modify—write processing can be
reduced using the smaller page size. However, the smaller page
size increases the metadata capacity consumption of differential
bitmaps. We evaluate the performance impact of the read-modify—
write process and the trade-off between performance and capacity
consumption on different page sizes in Section 5.

When DRC-DPU receives a read request for an EC chunk, it
examines the differential bitmap and switches the read target. DRC-
DPU reads data from the differential file when the differential bit
is on and from the EC chunk when the differential bit is off. DRC-
DPU merges the data in the EC chunk with the differential data
and returns the merged data to the applications
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Furthermore, DRC-DPU replicates the differential data to the
replication pair that contains the replica file during redirect on write.
DRC-DPU sends the write request to the replication pair, and DRC-
DPU on the replication pair updates the replica of the differential
data and the differential bitmap. DRC-DPU on the replication pair
writes the replica of the differential data into the replica chunk
whose capacity is de-allocated when the EC chunk is encoded. DRC-
DPU on the replication pair updates the replica of the differential
bitmap at the same time as the replica of the differential data. In
the event of a server failure, DRC-DPU decides whether to rebuild
the EC chunk or read a replica of the differential data based on the
replica of the differential bitmap.

4.3 Differential Data Merge

After responding to the write request, DRC-DPU performs differ-
ential data merge in the background to merge the differential data
into EC chunks. DRC-DPU periodically starts an internal thread
called Flusher in the background to perform differential data merge.
Flusher copies the differential pages in the differential file to the
EC chunk of the user file and then releases the capacity of the
differential pages. DRC-DPU performs parity updates in the same
way as a normal write to an EC chunk in DRC.

DRC-DPU uses the least recently used (LRU) list of differential
pages to delay differential data merge for recently updated differen-
tial pages. DRC-DPU reduces the number of parity updates when
the same differential page is updated multiple times.

DRC-DPU reserves a certain amount of capacity for storing
differential pages. DRC-DPU delays differential data merge until
the total capacity of the differential pages reaches the differential
capacity ratio B. If the total capacity ratio of the differential pages
exceeds B, DRC-DPU merges the differential pages with the oldest
update to EC chunks.

To prevent the decrease in capacity efficiency because of differen-
tial pages, DRC-DPU increases the ratio of EC data and reserves the
capacity for differential pages. DRC-DPU determines the capacity
ratio of the EC data based on the following equation for the original
EC target rate R.

Table 1: Experimental Environment

Items Settings

Machine HP Proliant DL 160 G6 x 3
CPU Intel (R) Xeon E 5620 2.40 GHz, 4 core x 2
Memory 12GB
Disk HP SATA SSD x 2,
Network Port HP NC550SFP 10 GbE Server Adapter
OS Ubuntu 16.04.4 with XFS
Benchmark tool fio 2.2.10

ECRatio=R+Bxr/(r— (m+k)/m) (3)

where r is the replication factor, m is the number of data symbols,
and k is the number of parity symbols. Based on the evaluation
using the real-world workloads in Section 5.2, the default value for
the differential capacity ratio B is set to 0.5%.

Per-page LRU list management enables finer-grained access mon-
itoring compared with the conventional chunk-based redundancy
control. DRC-DPU encodes only low-access frequency chunks into
EC data. However, if access is concentrated on a small number of
pages in a chunk, chunk-based monitoring might determine that
the chunk is a low-access frequency even if the access frequency of
the pages is high in page-based monitoring. DRC-DPU treats such
frequently accessed pages in EC chunks as replicated differential
pages. DRC-DPU reduces parity updates of these pages and the
performance overhead of EC.

5 EVALUATION

In this section, we confirm the effectiveness of DRC-DPU. In Section
5.1, we evaluate the performance improvement of the proposed
method using the synthesized workload. In Section 5.2, we evaluate
the parity update reduction and metadata capacity overhead of the
proposed method using the real-world workload.

5.1 Synthesized Workload Evaluation

5.1.1 Experimental Environment. Table 1 shows the experimental
environment. We used three commodity servers and ran the pro-
totype of proposed and conventional methods. We implemented
parity logging, SPW, and DRC-DPU in the DRC prototype, which
we developed in the prior study [5]. We ran the benchmarking tool
fio on one of the servers [1]. As a redundancy method, we used
two-way replication and 2D1P EC.

5.1.2  Experimental Results. We evaluated write response time and
throughput under random write workload for the proposed method
and the conventional methods. We evaluated the performance
degradation from replication for the naive method, parity logging,
SPW, DRC, and DRC-DPU. For SPW, we evaluated both the success
case and the failure case. In DRC and DRC-DPU measurements,
80% of the data were replicated, and 20% of the data were encoded
into EC. Because fio has no access locality, 80% of the data accesses
were issued to the replicated data and 20% to the EC data. As high
write locality is expected in the real world, the larger amount of
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data can be encoded for the same EC data access ratio in actual use
cases [26]. To evaluate the performance impact of the read-modify—
write processing, we evaluated 8 KB random write, which does not
require the read-modify—write processing, and 2 KB random write,
which requires the read—modify-write processing. One thread is-
sued random writes with the target size to a 48 GB file. Figure 7-9
show the evaluation results.

Table 2: Write Access Characteristics in Evaluated Trace Pe-
riods

Trace Number of Average Number of
Writes Size Accessed Chunks

hm_0 348,074 7.79 KB 3,947

prn_1 401,281 14.8 KB 27,626

proj_1 8,458,027 13.7 KB 10,953

prxy_1 473,201 9.44 KB 36,920

Figure 7 shows that DRC-DPU achieves a nearly equivalent write
response time to replication under an 8 KB random write workload.
The write response time of DRC-DPU is almost the same as that
of replication, even for the 20% capacity on the right side where
EC data access occurs. As a result, DRC-DPU improved the 99-
percentile response time from 8.6ms to 1.0ms, which is one-eighth
of the conventional DRC. The response time of DRC-DPU is also
superior to other conventional methods.

By contrast, Figure 8 shows that the write response time of
DRC-DPU under 2 KB random write is degraded against replication
because of the read-modify-write processing. However, even with
the read—modify processing, DRC-DPU still shows better response
time than DRC. For 99-percentile response time, all methods, in-
cluding replication, show a large response time. This is presumably
because of the performance characteristics of the local file system.

Figure 9 shows that the throughput degradation of DRC-DPU
against replication is only 9% at 8 KB and 13% at 2 KB. In addition,
DRC-DPU shows a higher throughput than other conventional
methods.

5.2 Real-world Workload Evaluation

In this section, we evaluated the efficiency of the proposed method
using the real-world workload. We used Microsoft Research Cam-
bridge (MSR) traces, which is 1-week I/O traces of enterprise servers,
for the evaluations [16]. We evaluated the reduction in the num-
ber of parity updates and the metadata capacity overhead of the
proposed method.

5.2.1  Parity Update Reduction. To verify the effectiveness of dif-
ferential data merge, we evaluated the reduction of the number of
parity updates. We examined the change in the number of parity
updates when the total capacity of the differential pages is changed.

We used the MSR traces with a large number of writes: hardware
monitoring (hm_0), print server (prn_10), project files (proj_1), and
firewall/web proxy (prxy_1). We assumed that the same accesses
with the MSR traces were issued to virtual disk image files of virtual
machines on a system using DRC-DPU. We used the first six days
in the MSR traces to encode low-access frequency chunks into EC
chunks. We simulated the change in the number of parity updates
for the remaining day in the MSR traces. Table 2 shows the write
access characteristics of these traces for the evaluated trace periods.

We also set the EC target rate R to 0.9 and used Equation 3 to
determine the total amount of EC data. We examined the number
of parity updates for the different capacity ratios B of differential
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Figure 10: Parity Update Reduction in MSR Traces

pages to the total amount of chunks accessed during the trace
period. Figure 10 shows the evaluation results.

DRC-DPU reduces parity updates by about 20% for hm_0 and
prn_1. DRC-DPU largely reduces the number of parity updates at
B = 0.5%, and no significant effect is seen with the higher values
of B. As there is a large write locality in these traces, the effect of
differential data merge becomes reasonably large.

By contrast, there is no significant improvement in prxy_1 and
proj_1. The reason for the poor results in prxy_1 and proj_1 is
thought to be because of fewer writes to the same EC chunks. In
addition, the larger amount of EC data to secure the capacity of the
differential pages seems to increase the number of parity updates
conversely.

These results show that the proposed method achieves a con-
siderably large parity update reduction for workloads with write
locality. For these workloads, 0.5% differential pages are considered
sufficient.

5.2.2 Metadata Capacity Overhead. We evaluated the capacity
overhead of the metadata used in DRC-DPU.

First, we evaluated the capacity consumption of the custom
file metadata for DRC and DRC-DPU with different page sizes of
differential data. We calculated the capacity consumption of the
custom file metadata for an EC stripe when using 2D1P and 6D2P
EC. Then, we investigated the ratio of metadata to the total capacity
consumption. Tables 3 and 4 show the evaluation results. The tables
show the capacity consumption of user data, parity data, metadata,
and the metadata ratio to the total capacity consumption for each
method. The size in parentheses indicates the page size.

The results show that the use of smaller page sizes increases the
metadata capacity consumption. However, even if the page size is 1
KB, the metadata ratio in the capacity consumption is 0.097% in the
2D1P configuration and 0.056% in the 6D2P configuration. These
results indicate that the impact of adding the custom file metadata
on capacity efficiency is sufficiently small.

Next, we examined the impact of different page sizes on perfor-
mance. In the evaluation, we examined the occurrence frequency of
read—modify—write processing in the simulations using MSR trace
as in the previous section. Figure 11 shows the evaluation result of
the occurrence frequency of read—-modify-write processing.

Table 3: Metadata Capacity Overhead of DRC-DPU (2D1P)

User Parity Meta- Meta-
data

Data Data data .
Ratio
DRC 1.0 MB 0.5 MB 0.38 KB 0.024%
DRC-DPU (1KB) 1.0 MB 0.5 MB 1.5 KB 0.097%
DRC-DPU (2KB) 1.0 MB 0.5 MB 0.95 KB 0.061%
DRC-DPU (4 KB) 1.0 MB 0.5 MB 0.66 KB 0.042%
DRC-DPU (8 KB) 1.0 MB 0.5 MB 0.52 KB 0.033%

Table 4: Metadata Capacity Overhead of DRC-DPU (6D2P)

User Parity Meta- Meta-
data
Data Data data .
Ratio
DRC 3.0 MB 1.0 MB 1.2 KB 0.030%
DRC-DPU (1 KB) 3.0 MB 1.0 MB 2.4 KB 0.057%
DRC-DPU (2KB) 3.0 MB 1.0 MB 1.8 KB 0.043%
DRC-DPU (4KB) 3.0 MB 1.0 MB 1.5 KB 0.036%
DRC-DPU (8 KB) 3.0 MB 1.0 MB 1.4 KB 0.033%
2.50% -
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Figure 11: Evaluation of Number of Read-modify-write Pro-
cesses

The evaluation results show that the occurrence frequency of
read-modify-write processing increases as the page size increases.
In particular, when the page size is set to 8 KB, the number of read—
modify-write operations increases significantly for three out of four
traces, while it stays almost the same in prj_1. In prj_1, all writes
are not 4 KB aligned, and read—modify—write processing occurs
regardless of page sizes, while most writes are 4 KB aligned in other
traces. By contrast, if the page size is less than 4 KB, there are fewer
differences in the number of read—modify—write processing.

These results indicate that the metadata capacity consumption
of DRC-DPU is sufficiently small. The 4 KB page adopted in DRC-
DPU is considered reasonable in terms of both metadata capacity
consumption and performance.



6 RELATED WORK

There has been extensive research on write buffers using volatile
memory [8, 18]. These studies have achieved improved performance
using volatile memory as the write buffer. DRC-DPU can be seen as
using the differential data as the write buffers, like the prior write
buffer techniques. However, DRC-DPU stores the differential data
in free space, while the prior write buffer techniques use the dedi-
cated devices for the write buffer. DRC-DPU achieves performance
improvement without additional devices using the free space for
the write buffer.

Much research has been performed in the area of hierarchical
storage control between different storage devices. Ceph provides a
write-proxy function that temporarily writes the write data to the
upper tier and updates the lower tier with a delay in a similar way
as the proposed method [21]. However, Ceph has a fixed upper tier
and lower tier capacity, making it difficult for Ceph to dynamically
change tier capacity. DRC-DPU stores all data types in the same
file system, and the capacity of each data type can be changed
dynamically. DRC-DPU has an advantage over Ceph in terms of
capacity efficiency because it stores all types of data in the same
shared storage space.

File metadata extension has been studied in the field of network-
attached storage to extend the capability of filesystems. Several
studies use additional file metadata for managing referencing point-
ers between files to enable cloud backup, data migration, and data
redundancy across servers [5, 14, 17]. Network-protocol-specific
metadata is another application of file metadata extension to achieve
higher protocol coverage of network protocol servers [6]. The pro-
posed method extends file metadata to manage differential data to
improve EC write performance. This study can be seen as another
application of the file metadata extension.

7 CONCLUSION

In this paper, we propose DRC-DPU to improve the degraded write
response time of DRC in server-based storage. DRC-DPU improves
the write response time by asynchronizing the parity update during
EC write processing. DRC-DPU improves the write response time
of EC data to the same level as replication.

In the performance evaluation, we confirmed that the proposed
method achieves almost the same write response time as replication,
which is one-eighth of the 99% response time of the conventional
method. In addition, the evaluation using the real-world workload
confirmed that the proposed method achieves considerable parity
update reduction and reasonable metadata capacity consumption.
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