LSM-Trees Under (Memory) Pressure

Ju Hyoung Mun, Zichen Zhu, Aneesh Raman, Manos Athanassoulis
Boston University

ABSTRACT

Log-structured merge trees (LSM-trees) are widely used in modern
key-value stores since they offer efficient data ingestion. To accel-
erate point lookups, LSM-trees employ filters such as Bloom filters
(BFs) to reduce unnecessary storage accesses to levels that do not
contain the desired key. BFs are particularly beneficial for empty
queries while they might be a small burden for non-empty queries.
Further, with larger datasets, the size of metadata like index and
filters also increases, making it less feasible to keep all BFs in cache.
Coupling this, with the increasing price of memory and the need
to reduce the memory-to-data ratio in many practical deployments,
we are seeing an increased memory pressure. In this setting, fewer
BF blocks are cached, thus causing additional storage accesses, since
they have to be fetched in memory to answer a query.

In this paper, we introduce SHaMBa, a new LSM-based key-value
engine that addresses the suboptimal performance when BFs do
not fit in memory. SHaMBa integrates a new variation of BF, called
Modular Bloom filters (MBFs) that replace a single Bloom filter
with a set of mini-BFs (modules) having the same aggregate size
and requiring the same total number of probes, distributed among
the modules. Querying MBFs accesses the modules sequentially,
resulting in the first module being more frequently in memory while
the remaining modules compete with data blocks in case of positive
queries. Further, we propose a new memory management policy
and two BF-skipping strategies to avoid accessing BFs when they
are ineffective. Our evaluation shows that SHaMBa substantially
outperforms the state of the art under memory pressure, having
the same average number of I/Os, needing only one-third of the
memory consumed by the state of the art.

1 INTRODUCTION

Log-Structured Merge-trees (LSM-trees) [31] are widely adopted
in state-of-the-art key-value engines including RocksDB [18] at
Facebook, LevelDB [20] and BigTable [10] at Google, HBase [21]
and Cassandra [4] at Apache, WiredTiger [42] at MongoDB, X-
Engine [22] at Alibaba and Dynamo [16] at Amazon, as they offer
high ingestion rate and fast reads. LSM-trees have several tuning
knobs like the compaction policy, the size ratio between the lev-
els, and the use of metadata - typically Bloom filters and fence
pointers. As a result, tuning LSM-trees has been a key goal, and
various optimizations have been introduced for querying [1, 49],
compaction [2, 14, 26, 37, 38, 47], filters and memory manage-
ment [7, 12, 23, 25, 28, 44, 46, 48, 50], and holistic tuning [13-15, 33].
The Structure of LSM-trees. LSM-trees buffer incoming data in
a memory buffer that, when full, is sorted and flushed to disk in the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission
by emailing info@vldb.org. Copyright is held by the owner/author(s). To Appear
in the 13th Workshop on Accelerating Analytics and Data Management (ADMS’22),
September 2022, Sydney, Australia.

Block Cache
Flr[1]F

filter block
index block
data blocks-

([pioioiol

eviction to
F low priority

[
High priority

p[p[1[F}

Low

eviction

Figure 1: LSM-trees organize data at multiple levels. The ca-
pacity of each level grows exponentially by the predefined
size ratio and each level consists of immutable sorted runs,
often composed of multiple sorted files. Each file maintains
filter (F) and index (I) metadata along with data blocks (D)
to accelerate lookups. To maximize the temporal and spa-
tial locality, these blocks are stored in a block cache. Often,
the block cache prioritizes F and I blocks since they have a
larger performance impact than D blocks.

form of a sorted run. When a sorted run is flushed to disk, it may be
iteratively merged with existing runs of the same size. Overall, as a
result of such iterative merges, the sorted runs on disk, also termed
Sorted-String Table or SST files in the literature [10, 17], form a
collection of levels of exponentially increasing size with potentially
overlapping key ranges across the levels. As a result, a lookup may
need to search all levels in the tree until it finds a match, which
can lead to multiple I/Os per lookup. In order to accelerate read
performance, LSM-trees employ metadata such as fence pointers
and Bloom filters to reduce the number of storage accesses [27].
Bloom Filters and Caching in LSM-trees. In order to avoid unnec-
essary data accesses during querying, LSM-trees employ a Bloom
filter (BF) [6] for every level or sorted run (or even per file in case
of partial compactions). BFs are used to identify levels that can
be safely skipped because they do not contain the queried key.
Figure 1 shows the basic structure of the physical storage of an
LSM-tree. Each level consists of a number of SST files, and each
SST file contains three types of blocks: filter blocks (F), that contain
the Bloom filters, index blocks (I), that contain the fence pointers
(i.e., a collection of triplets (min, max, offset) of each block), and
data blocks (D). Every time an SST file is accessed, it is beneficial to
cache the accessed filter blocks (to find out whether we should con-
tinue searching this SST file), the accessed index blocks (to help us
identify the data blocks that contain the desired data), and the data
blocks (in case they are accessed again in the near future). Practical
systems like RocksDB employ a two-level block cache where the
filter and index blocks are cached with a higher priority, whereas
data blocks are cached with a lower priority [35]. Essentially, the
block cache has two zones: the first zone caches filter and index
blocks, and the second zone caches data blocks. Contrary to data
blocks, filter and index blocks are not directly evicted. They are
first pushed to the second zone for one more round of LRU caching
while competing with data blocks. Note that while BF and index

0.4
T T S ——
0.3 i 0.8 q
02 I & 061/ —— Uniform
g ' Sl Normal (low skew)
0.1 Tl == Normal (high skew)
R 02 YCSB (Uniform)
0.0 e 0.0+
0.0 0.2 04 0.6 0.8 1.(0.0 0.2 04 0.6 0.8 1.0
Keyspace # SST files (descending order of access frequency
(a) PDF of data accesses (b) CDF of SST accesses

Figure 2: Even with uniform access patterns in the data do-
main, the access frequency of the SST files is not uniform,
hence, SST files require a non-uniform memory allocation
strategy for their BFs.

blocks are cached in memory to maximize their efficacy, they are
ultimately part of the sorted runs for persistence.

Memory Pressure. The memory allocated to an LSM-based system
is used by several different components: (i) the block cache for
caching BF blocks, index blocks, and data blocks, (ii) the memory
buffer for storing incoming data, (iii) temporary memory to compact
data, and (iv) temporary memory to support ongoing range queries.
While compute, memory, and storage prices decrease and allow
us to facilitate more data, in the last few years, the price drop in
memory has been slower than what has been for compute and
storage [29], making it hard to maintain the same memory-to-
data ratio. As a result, BFs may not always be in memory, and
a significant number of I/0Os may be spent on fetching them. For
example, consider an LSM-tree with one billion 1KB key-value pairs
and a size ratio of 10. It requires about 1.1TB of storage (1TB for the
base data and 11% of space amplification due to the inherent LSM-
tree duplication [17]). Assuming 10 bits per key are applied for each
BF and a 64B key size, around 1.25GB is required to cache all BFs
and approximately 17.19GB is necessary for index. If the feasible
memory-to-data ratio is 1:100, the available block cache would be
up to 1% of the 1TB data (10GB), and it can only cache a subset
of the metadata. For every metadata block not cached, the cost of
fetching it from the disk to memory is prohibitively expensive. As
the cost of storage is projected to keep getting cheaper faster than
memory, we expect the memory pressure to be further exacerbated.

Are All (Filter) Blocks Equally Important? As memory becomes
a scarcer resource, one should reconsider whether some of the
cached blocks are not as useful. For instance, LSM-tree tuning for
BFs does not consider the workload. Primarily, only the lookup vs.
the ingestion ratio is used in tuning, however, the access distribu-
tion may also affect the benefit gained from using BFs. In fact, this
benefit from BFs across different SST files varies significantly, even
when the workload is perfectly uniform. Figure 2 shows how the read
access patterns on the domain are translated into access requests
on various SST files of the LSM-tree. Figure 2(a) shows four differ-
ent read workloads - a YCSB-based read workload with uniform
accesses, and three synthetic workloads following the uniform, and
the normal distribution with two levels of skewness. Figure 2(b)
shows the cumulative distribution function (CDF) of SST accesses
for each workload. Note that the x-axis contains all the SST files
sorted by the number of accesses in descending order. The hori-
zontal dotted gray line corresponds to CDF value 0.8, i.e., it shows
the fraction of the SST files that get 80% of the accesses. A striking
observation is that even in a perfectly uniform workload, 80% of
the lookups are directed to 44%-46% of the SST files, while for more

skewed workloads described in Figure 2(a), the numbers decrease
to 14% and 8%. Overall, only a few BFs are accessed during most
point lookups, therefore, the majority of the BFs consume (possibly
scarce) memory resources without offering significant performance
advantages. The challenge here is to reduce the memory consumption
of unpopular BFs without hurting overall performance.

Modular Bloom Filters. To address this, we propose a new vari-
ation of BF, termed Modular Bloom filter (MBF) that divides the
Bloom filter into multiple modules. Each module is also a Bloom
filter by itself, i.e., an MBF is equivalent to a set of BFs. A query
sequentially accesses all modules until a negative result is obtained
or all modules have been queried, and the false positive rate of the
MBF is the same as the standard BF of the same aggregate size.
MBFs can accelerate point lookups by accessing a different number
of modules adaptively. A lookup can start with only a single module,
therefore, it does not require the whole filter to start probing. In
fact, an empty point query does not need (on average) to access
all modules. For example, in the common case of 10 bits per key,
having three modules will lead to accessing only one module on
average. Having multiple BF modules, allows us to evaluate the
utility of each module and use it only when it is beneficial.

MBFs in LSM-trees: SHaMBa. BFs in LSM-Trees are initially
stored on storage and fetched in block cache on demand. The entire
BF block of a file has to be brought into the cache. A key benefit of
MBFs is that by allowing them to bring only specific modules of the
overall filter, they navigate the memory vs. performance trade-off
of BFs without re-hashing. Further, MBFs build on the concept of
hash sharing [50] to amortize the hashing overhead due to using
multiple BFs. By controlling the number of modules accessed and
cached, Sharing Hashing with Modular Bloom filters, or SHaMBa
for short, enables variable memory footprint and highly tunable
false positive rate with no additional overhead.

Controlling the Number of Modules Using Their Utility: To decide
how many modules to access, we quantify their utility, i.e., a mea-
sure of the benefit of a module. We propose a novel lookup policy
that skips a module if there is no benefit from its filter. Skipping a
module avoids fetching unnecessary filter blocks from the disk and,
more importantly, prevents non-beneficial modules from polluting
the cache. SHaMBa prioritizes fetching in block cache the modules
that correspond to frequently read parts of the LSM-tree. Since
the size, and consequently, the false-positive rate of an MBF can
easily be adjusted by varying the number of modules, our proposed
algorithm can diversify the false-positive rate across files in order
to maximize the benefit from BFs under a given memory budget.

Contributions. Our contributions are as follows.

e We propose Modular Bloom filters (MBF), a novel Bloom filter
variant, which navigates the memory/accuracy BF tradeoff with-
out having to re-hash. Using MBF, we implement a rich set of
filter management policies with no overhead.

o We quantify the utility of a module that enables skipping parts of
the BF with no benefit. We show that module skipping reduces
memory utilization without sacrificing performance.

e We integrate Modular Bloom Filters in the state-of-the-art LSM-
engine RocksDB, and we show through extensive experimen-
tation with realistic workloads that our proposed techniques
outperform the state-of-the-art under memory pressure.

2 BACKGROUND ON LSM-TREES

LSM Structure. LSM-trees are widely adopted by modern key-
value stores since they offer high ingestion rate [4, 10, 16, 18, 20—
22, 31, 42]. LSM-trees store all inserts into a memory buffer with
a predefined size. Note that updates and deletes on existing keys
are treated similarly to inserts. Once the buffer is full, it is flushed
to secondary storage as an immutable sorted run, composed of
multiple immutable stored files referred to as SST files. Similar
to a buffer flush, a sort-merge is triggered when a level reaches
its maximum size, merging the saturated level with the next level.
During this process, obsolete entries are removed and the two levels
are merged into a single sorted level. The capacity of each level
exponentially grows by a factor T, termed size ratio. Thus, shallower
levels have newer entries but smaller sizes.

Compaction: Tiering vs. Leveling and Full vs. Partial. The
sort-merging between consecutive levels, termed compaction, can
be done either eagerly to optimize for future reads (leveling) or lazily
to increase the write throughput (tiering) [26]. Hybrid compaction
strategies that mix leveling and tiering on different levels have also
been proposed [9, 14, 15, 34]. Leveling restricts the number of runs
to 1 in each level, and once there is a merge operation between
Level i and Level i + 1, all overlapping data files in Level i + 1 are
considered. In contrast, when it comes to tiering, the number of
runs within the same level can be as large as T — 1 and the sort-
merge takes place between files of the same level when it reaches
its maximum allowed size. In addition, compaction can be applied
globally to the whole level, or partially to a small partition of a level.
The first, called full compaction, merges the entire Level i with the
entire Level i + 1, while the latter, called partial compaction, selects
a small partition of Level i (e.g., a single SST file) and compacts
it with the overlapping SST files of Level i + 1 [17]. In this paper,
we focus on partial leveling compaction, which is used by various
state-of-the-art systems including RocksDB.

Point Queries in LSM-trees. As LSM updates are out-of-place,
multiple versions of entries with the same key may co-exist. Note
that the newer version is always at a higher level. Thus, a lookup
sequentially proceeds from the highest (smallest) to the lowest
(largest) level and terminates when the first match is found. If there
are multiple runs at a level, the search goes from the youngest to
the oldest run and similarly returns the first matching value.

Auxiliary In-Memory Metadata. LSM-trees accelerate reads us-
ing Bloom filters and fence pointers in every SST file.

Bloom Filters: For each run, a Bloom filter (BF) [6, 40] stores the
membership information of all keys comprising this run. To avoid
multiple (potentially unnecessary) I/Os when querying LSM-trees,
a Bloom filter (per level) is queried in advance of accessing a run
to determine if it may contain the target key. Only for positive
results, the search continues to access the run on secondary storage.
However, BFs can have false positives (not false negatives). As
a result, the worst-case lookup cost depends on the sum of false
positives for all levels of the tree.

Fence Pointers: Every run residing on the disk is sorted by key;
thus, the key range of each disk page does not overlap with any
other page of the same run. In order to ensure at most one I/O
during a lookup for a single run, LSM-tree engines deploy fence
pointers, which are min-max ranges for each disk page. That way,

before accessing the run on storage, an efficient search in the fence
pointers would tell us which page to access on storage.

Block cache: In addition to fence pointers and Bloom filters, every
LSM-based key-value engine uses a block cache to hold recently or
frequently read blocks in memory. These blocks may come from the
fence pointers (index blocks), from the BFs (filter blocks), or from
data (data blocks). State-of-the-art LSM engines like RocksDB use a
block cache that has two priority queues where each one follows a
specific (e.g., LRU) eviction policy. The first queue is called the high-
priority one, and the second the low-priority one. Upon eviction
from the high-priority queue, blocks are moved to the low-priority
one, and eviction from the low-priority queue follows standard
eviction. In this scheme, data blocks are cached in the low-priority
queue, while filter and index blocks are cached in the high-priority
queue and are given a second chance before they are evicted.

Discussion on Partitioned Index and Filters In order to have a
more fine granular memory management, systems like RocksDB
support partitioned index and filters [43], where each SST file is
organized in smaller partitions and each one has its own index and
filter blocks. This approach creates the need for a two-level index
and necessitates the use of the index prior to the filter, slightly
increasing both the space amplification and the CPU utilization to
allow for finer memory management. The design of MBF presented
in this paper can co-exist with partitioned filters (as long as each
filter is more than one disk page), however, it can also be used
instead of partitioned filters, since it can allow for fine-grained
memory usage without increasing space or CPU consumption.

3 MOTIVATION

All BFs Are Not Equally Beneficial State-of-the-art LSM designs
treat all BFs as equally beneficial, having a uniform memory alloca-
tion policy across all BFs. However, not all BFs are accessed equally
frequently. Prior work highlights that even in uniform read pat-
terns, to ensure minimum access cost (in terms of the total number
of I/Os), BFs of different levels should be tuned with different false
positive rates, hence, with variable bits per element [12, 13]. The
intuition is that the SST files at the shallower (smaller) levels are
accessed first, hence, they will be accessed more frequently, in the
same way that the B™-Tree root node is accessed by every query,
and as we move downwards, the access frequency reduces. We take
this observation a step further and point out that when the work-
load is not uniform on the key domain, the access skew of the SSTs
is exacerbated (as shown in Figure 2). In addition, the type of point
queries that a BF receives (empty vs. non-empty) affects its benefit.
As the fraction of empty queries increases, the benefit of BFs gets
higher because they help avoid unnecessary I/Os. Conversely, had
we known that all queries are seeking existing values, we would not
need a BF at all. Putting everything together, the fraction of existing
queries that an SST file at level i receives, termed ¥, depends on
both the level i and the read access distribution. As a result, the
benefit of using the BF of a specific SST file depends on both (a) the
level it is located and (b) the part of the key domain it contains.
Figure 3 shows a heat map of the access frequency of the SST
files of the top 4 levels of an LSM-tree running (a) a uniform and
(b) a skewed read workload. For simplicity, we show the first four
levels of an LSM-tree with 8 levels and a size ratio of 2. The uni-
form workload is based on YCSB access patterns, and the skewed

1000K
1 201K

S00K
2 MTK 152K 180K 77K 600K

3 99K 55K 99K 99K K 40K GIK 100K
00K
K 36K 42K GIK 73K 86K 20K 30K 33K 57K 45K 67K 36K 38K dSK
0
1 2 3 1] 6 7 8 9 10 1l 12 13 W15
SST No.
(a) YCSB uniform
1000K
=
S00K
2 IK W:m;l\'

1K IK 45K 226K 1K IK 100K

600K

" . 200k
1K 1K 1K 1K IK 1K K M5K 17K S3T0K 370K 1K 1K IK 1K N

0
1 2 3 |] 6 7 8 9 10 1 12 13 14 15

SST No.
(b) Normal (low skewed)
Figure 3: Heat map of access frequency of the SST files of the
top 4 levels of an LSM-tree with size ratio 2, for (a) uniform,
and (b) skewed reads. In both cases, a few files receive most
access requests, hence, their metadata should have priority.

workload is the same as the one used in the introduction, with low
skew. Figure 3(a) shows that for any uniform workload, the SST
access frequency varies depending on the level they reside, following
the intuition of prior work that builds BFs with a smaller false posi-
tive rate in the top levels [12]. Figure 3(b) shows that for a skewed
workload, a small number of SSTs receive the vast majority of the
accesses. In level 2, 2 out of 3 SSTs receive more than 99.9% of the
accesses, in level 3, 2 out of 7 SSTs receive 94.5% of the accesses (and
3 out of 7 more than 99.99%), and in level 4, 4 out of 15 SSTs receive
99.7% of the accesses. This highlights that not all BFs are equally
important. If we only cache the BFs of the darker SSTs from Figure
3, we will already reap most of the BFs benefits. This motivates us
to quantify the utility of each BF, and, further, to break down a BF
in modules and quantify each module’s utility (discussed in §4).

BFs Crack under (Memory) Pressure In a typical LSM-based
system the goal is to keep all auxiliary metadata in memory. In
state-of-the-art systems like RocksDB, the way to handle memory
pressure is to use the block cache similarly to how a bufferpool oper-
ates. The block cache would keep the most frequently used blocks
from SST files, which could either be a data block, or a metadata
block (fence pointers or BFs). Most LSM-systems opt to pin the BFs
in memory and evict cold data blocks. When memory is insufficient
to hold all BFs, the performance degrades quickly. Essentially, ac-
cess to a BF that is on the disk could be even more expensive than
accessing the data block (since a BF is not ensured to fit in one data
block) and searching for the target key. Under the standard caching
scheme the BF will be fetched and cached, hoping to capture a
future empty query on the same SST file. Contrary to traditional
database systems that update in-place and an update keeps the
pages in the bufferpool, SST files are invalidated upon compaction
and the cached Bloom filter will quickly become worthless [44].
This motivates us to quantify the utility of a BF not only using its
access frequency but also whether the expectation is to be used as
part of empty or non-empty queries.

To showcase how an LSM-tree behaves under memory pressure,
we run an experiment using state-of-the-art RocksDB where we
measure the average bytes read per (empty) query including fence
pointers and BFs, while varying the block cache size between 10%

Memory budget: 10% 40% 70% 100%

Reads/lookup: 279KB 88KB 17KB 12KB
Normalized: 23.2x 7.3x 14x 1x

Table 1: Lookup cost under memory pressure increases pre-
cipitously due to Bloom filters not being always in memory.

Entry Filter Index Size (key sizes)
Size Size 8B 32B 64B 96B 128B 256B

64B 80KB | 0.1x 0.4X - - - -
128B 40KB | 0.2x 0.8% 1.6X 2.4% - -
256B 20KB | 0.4x 1.6x 3.2X 4.8% 6.4X -
512B 10KB | 0.8x 3.2X 6.4X 9.6X 12.8X 25.6X
1KB 5KB | 1.6x 6.4x 12.8x 19.2Xx 25.6x 51.2X

Table 2: Here we consider a 4MB SST file, page_size = 4KB,
and thus, P = 1024. Further bpk = 10, and we vary K and E.
Unless we have a large entry size and a rather large key size,
the filter is larger than the index.

and 100% of the aggregate size of the metadata of the LSM-tree.
Before measuring the reported numbers using the low skewed
workload, we run a warm-up workload to load the most frequently
accessed metadata blocks in memory. Note that a memory budget
of 100% means that the block cache fits exactly all metadata blocks.
Table 1 shows that as the available memory decreases, the read bytes
per query increase rapidly from 12KB to 279KB, a 23.2X increase.
For 100% memory budget, we expect that some of the BFs and index
blocks might not be in memory since the warm-up workload does
not always touch the whole database. The available memory is
enough for holding BFs and fence pointers, but as we bring some
data blocks, BFs might also be replaced. As the memory budget
decreases to 70%, the amount of data read increases to 17KB, which
is 1.4% of the 100% case. For a memory budget of 40%, we see a
7.3X increase, and for 10% a 23.2X increase. This experiment further
motivates us to design a new BF variant that does not always need
to be loaded in its entirety before it can be used to answer queries.

Index Size vs. Filter Size. Since both the index and the filter blocks
need to be cached in memory to offer fast reads we now discuss the
relative size of the filter and the index of an SST file. Note that the
size of the filter depends on the overall number of entries in the
SST file, while the size of the index depends on the number of data
pages. Consider an SST file with P data pages of size page_size each,
entry size E, key size K, and bpk bits per element. The index size
is P - K bytes, while the filter size is P - page_size/E - bpk/8 bytes.
So if we assume that we have a 4MB data portion of an SST file, an
entry size anywhere between 64B and 1KB, a key size between 8B
and 256B, and 10 bits per element for the Bloom filter, the index
may be anywhere between 0.1X to 51.2X the filter size, as shown
in Table 2. While the index is not always smaller than the filter in
an SST file, in this paper, we focus on managing the filter blocks
for two reasons: (a) in most practical use-cases the index is indeed
smaller than the filter, and (b) the index needs to be fully accurate
when answering queries. Further, the index can be optimized via
partitioning, essentially, by building a packed two-level search tree.

4 MODULAR BLOOM FILTERS

Next, we present Modular Bloom filters that divide a BF into multi-
ple modules to flexibly navigate its space vs. accuracy tradeoff.

4.1 The Structure of a Modular Bloom filter

A Modular Bloom filter (MBF) uses m bits to index n elements in
each of D modules. Each module uses my bits such that Zfi):l mg =
m. Essentially, an MBF is a collection of D Bloom filters, and every
membership test has to go through all modules before it concludes
with a positive result if all modules have to be used. On the other
hand, a negative response at any module terminates the query with-
out the need to further continue probing the remaining modules.
Figure 4 compares a Modular Bloom filter, which is composed of
three modules, with a standard BF.

Every module is also a Bloom filter, hence, alookup can use any of
the available modules without re-indexing. Thus, MBF can maintain
only the selected modules in fast memory, leading to smaller mem-
ory consumption at the expense of a higher false positive rate (with-
out recalculating the filter). There have been several approaches
that divide a Bloom filter into smaller chunks [24, 30, 32, 39, 45, 48].
The innovation for MBFs is that by indexing all elements in all
modules, the membership test can move forward with any subset
of the modules.

Different modules of an MBF may have arbitrary sizes, however,
in practice, it may be easier to consider equally-sized modules.
Consider the case of a classic BF that uses 10 bits per element (a
typical value for BFs deployed in LSM-trees). The number of index
kopt probes that minimize the false positive rate f is given by

f= (%) win? ~ (1 _ e—kn/m)k where kopr = %an (1)
and for 2 =10, kop; = 7. Every empty query on a BF will return a
negative result (or a positive result with a false positive probability
f). For the case of kops = 7, the average number of index probes
before it finds a bit set to 0 and terminates is 1.93 (further discussed
below). Hence, an MBF can have a module with m; bits and k; = 2
index probes to capture the bits needed on average before a negative
query terminates, and then load the remaining modules when the
first result is positive. Next, we show that while the size of the
modules can vary, in order to minimize the overall false positive,
each k; has to follow the same rule as in Eq. (1).

MBF False Positive. The false positive rate of an MBF is equal to
the product of the false positive rate of each module, which is equal
to that of a smaller Bloom filter using Eq. (1).

D D o ka
fupr(mab k) = [[fa=[](1=¢"™)" @
d=1 d=1

The problem of minimizing fypr from Eq. (2) is equivalent to
minimizing the logarithm of the false positive In(fy1pr).

D D
min kyln(1 — e kan/may 51 N =m (3)
{md,kd}dz:; d dz:; d

Using the Lagrangian multiplier we get that in order to minimize
the false positive of an MBF we need to have:

vd, kg = % n2)

This means that an MBF is a generalization of the classic Bloom
filter, and when there is one module (D = 1) an MBF is a classic
BF. In addition, the false positive of an MBF with optimal kg, Vd

(a) A standard Bloom filter.
k

§'I0I0I1IOI3I|0I:1I1I0|0| [ollolololt|olo]1]o I0|0I1I0I3|?I:3|1I0I0|\§

(b) A modular Bloom filter with three modules of equal size.

Figure 4: Modular Bloom filters split the physical represen-
tation of a BF into multiple independent modules.

is identical with the false positive of a classic BF with the same
overall number of bits available:

opt P mg 2 Z51):1 md 2 m 2

Mi;F = H e~ (n2)? _ =% (n2)? _ -2-(In2)? _ é’]{ft)

d=1

Average Filter Probes for an Empty Query. Now we revisit the
question of how fast an empty query terminates. First, we note
that the optimal number of indexes (kop;) that minimizes the false
positive rate, leads to a BF that has half its bits set, as shown in
Eq (1). After the first probe, with probability 1/2 there will be a
second one. Now, in case we had a second probe with a conditional
probability 1/2 there will be a third probe, with a total probability
of 1/22. This logic continues until we reach the kth probe with total
probability 1/ 2k=1 Hence, the expected number of filter probes can
be given by the geometric-like series in Eq. (6).

k
1 1
probesempty = Z 2(1'_—1 =2- zk_—l (6)
d=1

For every k, probesempty is less than 2, hence, an MBF with the
first module that accounts for 2 index probes (kg = 2 = % ~ 3)is
enough to account for the average index probes of an empty query.
If the first module accounts for 3 filter probes then it will capture
the Z?l:l zld = 0.875 of all the accesses without requiring fetching
the remaining modules.

Experimental Verification of False Positive Ratio. In practice,
if we have a memory budget for Bloom filters, for example, 10 bits
per key, we do not want to break it down to too many modules. We
want to map at least one index probe per module, so for 2% = 10
and kapt = 7, we would choose 1, 2, 3, or 7 modules, depending
on the flexibility we want to achieve. We implement MBFs with
1, 2, 3, or 7 modules, using accordingly the following number of
index probes per module: {7}, {3,4}, {2,2,3}, and {1,1,1,1,1,1,1}.
Table 3 compares the theoretical expectation and the experimentally
measured false positive of a Modular Bloom filter that uses 10 bits
per element. The experiment indexes 500K elements in 5 - 10° bits
(~ 625KB), and measures the average false positive after running 2M
empty queries. We observe that the difference from the theoretical
false positive (which is the same as for the classical BF with 10
bits per element) is negligible. The last line of Table 3 shows the
average number of module accesses per empty query. We discussed
above that in a classical Bloom filter the average number of index

Modules: 1 2 3 7

Theoretical FP: 0.819% 0.819% 0.819% 0.819%
Experimental FP: 0.825% 0.847% 0.887% 0.830%
Avg. Module Accesses: 1 1.093 1.251 1.997
Module Size as % of the BF: 100% 50% 33% 17%

Table 3: MBFs achieve a false positive rate close to the the-
oretical rate of a BF with the same aggregate size. As MBFs
have more modules, the average number of module accesses
grows, however, the average size of each module decreases.

symbol Explanation

SSTy; i-th SST file in level [

oL the ratio of existing keys for SSTj ;

Bri the access frequency for SSTj ;

urid The utility of the d-th module for SST; ;

explOyp;q The expected number of I/O when using d modules for SSTj ;
Table 4: Notation for calculating the utility of BFs

probes per empty query is less than two. However, when the MBF
has one module (hence, it is a classical BF), it has to load the entire
module, while, when we have two modules, it loads on average 1.093
modules, meaning that most queries are answered using only the
first module (which is 40% of the memory). Finally, in the extreme
case of having 7 modules and one index probe per module, we only
have to load on average 2 modules out of 7 (28% of the memory
footprint). This allows for more efficient memory utilization in
multiple ways. For example, even when all BF modules are loaded
in memory the cache memory is not polluted with all modules.
When the modules do not all fit in memory, the system can decide
to pin some modules and sporadically use the last modules that
have a marginal benefit. We further discuss the applicability of MBF
for full-blown systems in the next section.

4.2 Modular Bloom Filters In LSM-trees

Modular Bloom filters offer a flexible alternative to Bloom filters for
LSM-trees. Instead of relying on a monolithic fixed-size Bloom filter,
LSM-trees can navigate the memory availability vs. performance
continuum by providing the MBFs a specific memory budget to use.
MBFs are different as each level or even each SST file can make
an independent decision as to whether it will use all or a subset of
its modules. In practice, because the metadata blocks of realistic
systems are used in equal-sized pages which are also part of the SST
file, we resort to MBFs with equal-sized modules. Note that we also
implement MBFs with modules of various sizes in the evaluation.
Typically, in our experiments, an MBF of a single SST has two
or three modules each one occupying one or more pages. In the
examples discussed below, we assume that each SST file has an MBF
with three modules of the same size. This leads to a simplification
with respect to the expected false positive contribution per single
module fip,, which is expected to be also equal fi = fo = f3 = fom-
Hence, the false positive rate of the MBF fypF is given as follows.

fupr=ffo f3 = fom)
Table 4 summarizes the notation for the following utility and skip-
ping algorithm.
BF Utility. As we have seen in Section 3 not all BFs are equally

beneficial, because their access frequency varies widely. In addition,
the benefit of a BF comes from the unnecessary I/Os avoided for

QueryMBF (key k, SST; ;)
for d = 1,d <number of modules, d++ do
//calc module’s utility
explOy; 4 = Bui - (i + (1 —ary) - f,);
uy;q = explO(l,i,d) — explO(l,i,d - 1);
if skipg==true & uy; q < thresholdg then
‘ // skipping module, assumes that it returns positive
return true;
else
// probe the module like a mini BF
// this part might cause an I/O if the module is not cached
result = QueryModule(k, module; ; 4)

end

if result==false then
| return false;

end

end
return result;

end
Algorithm 1: Querying an MBF uses the utility of each module
(along with utility thresholds per module) to decide whether
accessing a module is beneficial.

empty queries. However, there is still a lot of room for improvement.
To fully exploit the multiple modules of MBFs, we quantify the
utility of each module and design a new module management policy.
We define the utility as follows. We consider for every SST file i
at level | two quantities to calculate the potential benefit from a
BF: (1) the ratio of existing keys a; ;, and (2) the access frequency
Bi1.;i- The utility of a module estimates the impact on the expected
number of I/Os when the specific number of modules is in use. For
a module d on an MBF at level [of SST file i, the utility is given as
follows:

upid = explOy; g — explOp; 4y (8)
where explOy; ; is the expected number of I/Os when using d
modules at the specific SST file.

explOy; 4 = i - (al,i +(1-ayy) ’fs‘fn))

Eq. (9) quantifies the number of I/Os at a specific SST file by taking
into account the popularity of the file §; ;, the amount of true posi-
tive queries reaching this SST file @; ;, and the false-positive ratio as
a function of the number of the modules (d) used for that file. Note
that for any SST file, the expected I/O when using no modules is
explO; ;o = a;;- By, and that the total number of base data accesses
is given by the fraction of positive queries a; ; summed up with the
negative queries for which there is a false positive (1 - a;;) - fs‘fn

State-of-the-art systems maintain statistics about the number of
accesses already. We add another counter for positive queries. In
case an SST file was just created after compaction or flushing, the
necessary quantities can be approximated through the correspond-
ing metadata of overlapping files from other levels as follows. The
popularity of the SST file can be calculated using the popularity of
the overlapping files from the last level, and the ratio of positive
lookups per SST file can be calculated using the ratio of positive
lookups in the overlapping files from the last level divided by a
factor of T for each level between the current level and the last one.

Skipping Modules Using Their Utility. The expected number
of I/Os and the utility of a module, help us estimate its benefit.
Data access is inevitable when the expected number of I/Os is
equal to one, therefore, accessing the module is unnecessary. Hence,

we propose to skip probing modules if the expected number of
I/Os is over a certain threshold. When the block cache is large
enough to hold all available BFs there is no benefit from skipping
a module. However, with limited memory, probing a module with
low utility may evict from the cache other modules with higher
utility. Therefore, skipping low-utility modules reduces the stress
of block cache competition and increases the probability of high-
utility modules staying in the cache. Note that the utility of a filter
module corresponds to the number of I/Os that it can save if used.
Algorithm 1 shows how to query an MBF and how to skip modules
using their utility. The core idea of the algorithm is that if a module
is expected to lead to an I/O anyway (combining the frequency
of the accesses, and the frequency of queries being non-empty on
the specific SST file), the system will prefer to go directly to the
data since the I/O is inevitable (if we refer to the last module). As
the utility of modules in different orders is not comparable, we
allow the algorithm to use a different threshold per module slot.
Moreover, it is also possible to skip only a subset of the modules
since their utility decreases as more modules are accessed. As shown
in Algorithm 1, the decision to skip is made per module skip;. Note
that the modules are always accessed sequentially, thus the decision
to skip the i-th module affects the rest of the modules.

When are MBFs Feasible? In order to be able to employ MBFs,
we need to guarantee that the aggregate size of Bloom filters of an
SST file is equal to or larger than the number of modules intended
to use. Specifically, the following equation should hold true:
fileSize A M
k lueSi 8
M > numModules (10)
pageSize
This equation can guide the LSM-Tree tuning and specifically the
file size picked, a parameter that is often neglected when discussing
tuning.
numModules - pageSize - keyValueSize
° (1)
bpk
8

fileSize >

For example, to support 2 modules for a system with a 4KB page size,
256KB key-value entry size, and 10 bits per element, the file size has
to be larger than 1.6MB. Note that MBF also can be implemented
for partitioned index/filter if Eq. (10) is satisfied. Eq. (10) can be
easily modified for partitioned index/filter by simply modifying the
SST file size to be equal to the size of each partition.

How to Choose the Thresholds for Skipping Algorithm. To
decide the skipping threshold, we conduct a micro-benchmark to
measure the observed utility distribution. Figure 5 shows the his-
togram of utility modules for uniform access patterns while varying
the ratio of empty queries a. As & grows, the range of the utility
widens. However, even when the workload has only empty queries
(a = 1), the utility of different modules is not static because the
SST access frequency is not uniform even for uniform access distri-
bution (Figure 3). For simplicity, we use as threshold utility = 0.2,
which in our micro-benchmark serves as a clear separation point
of the modules with zero utility and the remaining modules.

Updating a and f. Our proposed skipping algorithm is based
on the statistical information per SST file. We assume that these
statistics are inherited during compactions and flushes as discussed
earlier. During query execution, we combine the inherited («; and

60%
10%

<

e (%)

10%

S

20%

Percentage

20%

0% 0% 0% - —
0.0 0.1 0.2 0.3 0.0 0.2 0.4 0.00 025 050 0.75
Utility Utility

* Utility
(a) @ = 0, uniform. (b) @ = 0.5, uniform. (c) @ = 1, uniform.

Figure 5: Histogram of utility of uniform distribution with
various a. As the ratio of empty queries (@) grows, the range
of utility also increases. However, the utilities of modules
even for all empty queries are not equally beneficial since
the access frequency of SST files varies.

Bi) and measured (o, and fp,) statistics. In order to cope with the
workload shifts, we assign more weight (w) to a;, and f, as the
age of SST files increases as per Eq. (12). Note that w is a function of
time; when the SST file is just created, the weight is zero (w(0) = 0),
but it is tuned to choose the measured statistics when the age of
the SST file is over a predefined threshold. That way, we have the
time needed to collect enough query statistics without sacrificing
accuracy in the meantime.

a=oam-wt) +a;-(1-w(t) (12)
The same approach is used to approximate S as well.

Different Priorities for Modules. Another advantage of MBF
over BF is that modules can have different priorities. The different
modules of an MBF have different access frequencies; therefore,
their utility and hence, their probability of staying in the cache
also differs. In addition, since practical systems like RocksDB today
support multiple priority queues when caching, we explicitly assign
different priorities to modules. Specifically, we assign high priority
to the first module, and low priority to all other modules.

5 EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation and anal-
ysis of SHaMBa. We demonstrate that SHaMBa can significantly
outperform the state of the art when there is memory pressure.

Experimental Platform. We run our experiments in our in-house
server, which is equipped with two sockets each with an Intel
Xeon Gold 6230 2.1GHz processor with 20 hardware threads and 40
threads with virtualization enabled. The server is equipped with two
7200RPM hard drives and one off-the-shelf SSD In our experiments
we use the SSD devices as secondary storage.

Workloads. We conduct our experiments with different workloads
to stress-test all our approaches. Since our algorithms only affect
read performance, we first prepare an LSM-Tree with 1GB of key-
value pairs with 64B entry size, 4MB write buffer, and size ratio 4.
We then execute a read-only workload varying the data access skew,
and the fraction of empty lookups. With respect to skew, we vary
the access patterns to follow (a) a uniform, (b) a normal distribution
with a standard deviation of 5 keys in the key space, or (c) a Zipfian
distribution with a skew factor of 2. A pictorial representation of
the access frequency in the domain is shown in Figure 2(a).

Note that for queries that return a positive result, any BF access
is essentially an overhead that we have to pay to optimize for
the empty queries. Our skipping algorithms from Section 4.2 are
addressing exactly this problem and they attempt to reduce the

Term Value Explanation
E 64 entry size (B)
K 32 key size (B)
B 64 block size (#entries)
P 1024 buffer size/file size (#blocks)
T 4 size ratio
b 10 bits per key for filters
Sp 4KB data block size
St 32KB index block size
Sp 80KB filter block size

Table 5: Experiment Settings

Term Value

number of modules 1,2, 3,0r7
size of each module equal or proportional

skipping algorithm none, partially (?), or fully (F)
Table 6: Experimental setup and knobs of SHaMBa

overhead of BF for positive queries without losing their benefit for
empty queries. In order to evaluate the efficacy of skipping, we also
test workloads that vary the fraction of empty queries between 100%
(a = 0), 50% (@ = 0.5), or 0% (¢ = 1). As discussed in Section 4.2,
the fraction of empty queries drastically varies in different parts of
the domain and in different levels of the LSM-Tree (i.e., each SST
file maintains a separate account of the empty queries it observes).

System Settings. Table 5 summarizes the LSM tuning parameters
that we used in our experimentation. The table includes some spe-
cific LSM-tree parameters that relate to the block cache to better
explain the impact of caching. Specifically, we enable the block
cache with LRU as an eviction policy, and in our experiments, we
vary its capacity between 10% and 150% of total metadata size.

Metrics. SHaMBa does not affect data ingestion hence we focus on
analyzing its query performance. For each experiment, we populate
the data and then repeat read-only experiments five times. We
report the average number of I/Os and the latency per query.

Approaches Tested. We compare SHaMBa with our in-house LSM-
tree prototype based on the state-of-the-art RocksDB [18] to show-
case the benefits of Modular Bloom filters. SHaMBa has multiple
tuning knobs such as the number of modules, the size of each mod-
ule (modules can have identical or variable size), lookup policies
(with or without the skipping algorithm), and thresholds for the
skipping algorithm. In order to thoroughly evaluate the SHaMBa,
we conduct four sets of experiments in the following subsection.
First, we conduct two sets of experiments that vary two tuning
knobs of SHaMBa (Table 6): the way to choose the size of modules
(SHaMBa-eq or SHaMBa-prop) and the number of modules. Addi-
tionally, we implement and evaluate our SHaMBa with partitioned
index and filter and Monkey. Finally, we evaluate SHaMBa imple-
mented in RocksDB. In each set of experiments, we test two main
variations of SHaMBa, one that has modules of equal size (SHaMBa-
eq), and one that has modules with variable size (SHaMBa-prop) .
The latter is always tuned so the total size of the first module can
fit in memory to avoid eviction, that is, its size is proportional to
the available memory. In addition, for each of the two module sizes,
we compare three lookup policies: (i) one that uses all available
modules, (ii) one that always queries the first part of modules and

based on their utility decides whether to skip the second part (),
and (iii) one that might decide to skip all modules (). Overall, we
test the following systems:

o state-of-art: an LSM-engine that uses a single BF per SST file.

e SHaMBa-eq: uses MBFs with multiple equal-size modules.

e SHaMBa-eq-P: uses MBFs with multiple equal-size modules,
and conditionally skips the part of modules if the utility of
modules is less than the predefined thresholds.

e SHaMBa-eq-F : uses MBFs with multiple equal-size modules,
and conditionally skips full or part of modules if the utility
of modules is less than the predefined thresholds.

e SHaMBa-prop: uses MBFs with size proportional to the avail-
able memory, so that the first modules fit in the cache.

e SHaMBa-prop-P: uses MBFs with size proportional to avail-
able memory, and conditionally skips part of modules if the
utility of modules is less than the predefined thresholds.

e SHaMBa-prop-F: uses MBFs with size proportional to avail-
able memory, and conditionally skips full or part of modules
if their utility is less than the predefined thresholds.

5.1 MBFs Under Memory Pressure.

We now show how SHaMBa performs compared to our in-house
LSM-tree prototype based on the state of the art LSM-engine. We
compare the lookup performance of SHaMBa against the state of the
art. For each experiment, before we report measurements, we run
30K read queries with the same characteristics to warm up the block
cache. Note that the metadata for module skipping is populated
and maintained throughout the warmup phase. SHaMBa integrates
Modular Bloom filters to provide performance that is resilient to
memory pressure, diverse workloads, and access patterns.

5.1.1 Equal-sized modules vs. proportional sized modules.

In this set of experiments, we use two modules and compare the two
main variations of SHaMBa: SHaMBa-eq and SHaMBa-prop. We
compare three lookup policies discussed earlier: (1) one that always
uses two modules, (2) one that always queries the first module and
using the utility might decide to skip the second module (%), and (3)
one that might decide to skip both modules (7). Unless otherwise
noted, the thresholds used for the two skipping algorithms are 0.1
for skipping the second module and 0.2 for skipping the entire filter.
The rationale behind the thresholds is that when we are using the
partial skipping algorithm (), the first module is already positive
and we have to do anI/O for the second module as well. With respect
to performance, it is inconsequential whether the I/O happens for
the second module or the data, so, we have an aggressive threshold.
For full skipping () we test whether to skip both modules; so, we
ensure that with high probability, both modules are not in memory
or the query is indeed positive. Thus, we use an increased threshold.

SHaMBa-eq Outperforms the State of the Art. Figures 6(a)
through (i) compare SHaMBa-eq with the state of the art as we
vary the access distribution (uniform, normal, Zipfian), and the
fraction of non-empty queries a (0, 0.5, 0.1). The x-axis of each
graph shows the available memory budget that varies between 10%
and 150% of the total size of the fence pointers (index blocks) and
Bloom filters (filter blocks) assuming 10 bits per element. The y-
axis is the number of I/Os per lookup. Note that the latency graphs
follow very similar patterns but we show the I/O that is the main

I/O per lookup

e
olw

0] :

0 40 70 100 150 10 40 70 100 150 10 40 70 100 150
Memory budget (%) Memory budget (%) Memory budget (%)
(a) @ = 0, uniform. (b) @ = 0.5, uniform. (c) « = 1, uniform.

1/0 per lookup

&
0 40 70 100 150 0 40 70 100 150 0 40 70 100 150
Memory budget (%) Memory budget (%) Memory budget (%)
(d) @ = 0, normal. (e) @ = 0.5, normal. (f) @ = 1, normal.

—H— state-of-art
----- SHaMBa-cq
HaMBa-eq-P
SHaMBa-eq-F

£ o = o~ = - = =
10 40 70 100 150 10 40 70 100 150 10 40 70 100 150
Memory budget (%) Memory budget (%) Memory budget (%)

(g) a = 0, Zipfian. (h) @ = 0.5, Zipfian. (i) @ = 1, Zipfian.

1/0 per lookup
L

Figure 6: SHaMBa-eq reduces the I/O per lookup for differ-
ent access distributions and exploits workload monitoring
to avoid fetching modules with low utility.

bottleneck as we encounter memory pressure. In every graph, we
observe that the variant of SHaMBa (black lines) consumes a sig-
nificantly lower number of I/Os per lookup than the state-of-art
(blue line) for a memory budget of less than 100%. This is on par
with our expectation - when the available memory is enough for
all filter blocks, MBFs and utility-based skipping is not necessary.
As we reduce the available memory, however, modules in MBFs
allow the BFs to remain useful even when they only partially fit in
the cache. In Figure 6(a) we observe that for all empty queries on
uniform data distribution, by retrieving a smaller number of mod-
ules based on their utility we reduce unnecessary expensive I/Os.
In Figures 6(b) and (c) we see this trend continuing, however, we
now observe a differentiation between SHaMBa-eq, SHaMBa-eq-?,
and SHaMBa-eq-¥. Here, as more queries access data that exist
(and have always positive results), we avoid fetching an increased
number of modules using their utility. For the more skewed dis-
tributions in Figures 6(d)-(i) we see similar results but SHaMBa’s
benefits kick in only at smaller block cache sizes because skewed
accesses require a smaller cache to capture the working set.

SHaMBa-prop Shines under Severe Memory Pressure. Fig-
ures 7(a)-(i) show how SHaMBa-prop outperforms the previous
approach under extreme memory pressure. The key difference be-
tween SHaMBa-prop and SHaMBa-eq is that the size of the first
module in SHaMBa-prop depends on the total available memory. If
the memory budget is 70%, the bits-per-element of the first module
is 7, and for the second module 3, to always have enough memory
for all first modules. Note that when the memory budget is greater
or equal to 100%, SHaMBa-prop is identical to the state-of-the-art.
We observe trends similar to the previous experiments with
respect to access distribution and workload. SHaMBa-prop has
one key difference when compared with SHaMBa-eq. The first
modules always fit in the cache, so when the system is under ex-
treme memory pressure (e.g., memory budget <50%), it outperforms
SHaMBa-eq. This is further pronounced for SHaMBa-prop-P /¥ .

1/0 per lookup

-
-~
10 40 70 100 150 10 40 70 100 150 0 40 70 100 150
Memory budget (%) Memory budget (%) Memory budget (%)
(a) @ = 0, uniform. (b) @ = 0.5, uniform. (c) @ = 1, uniform.

N
Py 2. -
0 40 70 100 150 0 40 70 100 150 0 40 70 100 150
Memory budget (%) Memory budget (%) Memory budget (%)
(d) @ = 0, normal. (e) « = 0.5, normal. (f) « = 1, normal.

—B- state-of-art
3¢ SHaMBa-prop
SHaMBa-prop-P
- SHaMBa-prop-F

P = R P Py B P
70 100 150 10 40 70 100 150 10 10 70 100
Memory budget (%) Memory budget (%) Memory budget (%)

(g) a = 0, Zipfian. (h) a = 0.5, Zipfian. (i) a = 1, Zipfian.

2
50

Figure 7: SHaMBa-prop matches state of the art for memory
>100%, however, as the first modules always fit in cache, it
outperforms all approaches under severe memory pressure.

MBFs are Beneficial even with High Memory Budget. A key
outcome of the experiments presented in Figure 6 is that SHaMBa-
eq is beneficial when compared to the state of the art even when
available memory budget is more than 100% - e.g., Figures 6(a)-(c).
This is because even though the cache is large enough to hold all
index and filter blocks, they still compete with data blocks especially
when non-empty queries form a large fraction of the workload. On
the contrary, SHaMBa-prop reverts to the standard single module
when the memory budget exceeds 100%. Taking into account that
SHaMBa-prop is beneficial mostly for very low memory budget,
we can select to use SHaMBa-eq when the memory budget is at
50% or more of the index and filter size, and SHaMBa-prop when
the expected memory budget is smaller.

Skipping Boosts Existing Lookups. A key motivation of our
work is that BFs are not equally beneficial. BFs are useful for empty
queries, and less so, for existing queries. However, our module
skipping algorithm takes the existing ratio as an input parameter
when quantifying the utility of a BF module. That way, even when
the existing ratio increases (¢ grows), skipping modules avoids
accessing unnecessary blocks. Note that even a query on an existing
key will perform searches for keys that do not exist in some levels.
Throughout the experiments shown in Figures 6 and 7, we observe
that the skipping algorithm reduces the number of I/Os per lookup
significantly both for lower and higher values of a.

5.1.2 Impact of number of modules.

We now evaluate the impact of varying the number of modules for
SHaMBa. For simplicity, we test only the equal-sized modules. We
implement MBFs with 1, 2, 3, or 7 modules as shown in Table 3.
Here, we apply the skipping algorithm to all modules.

SHaMBa Performs Best with Smaller Modules. Figure 8 shows
that the smaller the module size the higher the performance for
SHaMBa-eq, because it allows for memory management at a finer
granularity. Note that the smaller module size corresponds to an

I/O per lookup

£
10 40 70 100 150 1040 70 100 150 10 40 70 100 150
Memory budget (%) Memory budget (%) Memory budget (%)

(a) @ = 0, uniform. (b) @ = 0.5, uniform. (c) « = 1, uniform.

1/0 per lookup

= Py

0 40 70 100 150 0 40 70 100 150 0 40 70 100 150
Memory budget (%) Memory budget (%) Memory budget (%)

(d) @ = 0, normal. (e) @ = 0.5, normal. (f) @ = 1, normal.

£10 —& state-of-art
< =3¢+ 2 modules
= -©- 3 modules
g5 & 7 modules
2
(1B P o 3
10 40 70 100 150 10 40 70 100 150 10 40 70 100 150
Memory budget (%) Memory budget (%) Memory budget (%)

(g) a = 0, Zipfian. (h) @ = 0.5, Zipfian. (i) @ = 1, Zipfian.

Figure 8: SHaMBa-eq achieves the minimal number of I/Os
with smaller modules.

3 100 -
§ ~ ! piviu _;_._._’ e v
=3 RS s, Y
=2 80 [--m —— 1 modules
§~§ _________ + @ 2 modules
E ;:: 60 - j modules
° 50 —4- 7 modules
X T — T T T — T
“ . a A “
N N GG\ CIEN CON GG G >

Fraction of MBF accessed
Figure 9: For empty queries, not all modules need to be
accessed. For a 2-module MBF, the percentage of empty
queries that terminate after accessing only one module is
91%. Similarly, for a 7-module MBF, 50% of the queries termi-
nate after accessing only one module, and more than 94% ter-
minate after accessing four modules (57% of the MBF). This
allows us to have a finer control of the space vs. performance
trade-off as the number of modules grows.

MBF with seven modules. In Section 4.1, we conducted a micro-
benchmark to show the average number of module accesses for
empty queries in Table 3. We observe that the average number
of module accesses increases as the number of modules grows;
however, the size of each module decreases, leading to fewer overall
1/Os for smaller modules. Figure 9 shows on the y-axis the fraction
of module accesses terminating after accessing each module for
uniform empty queries. A classical BF (having one module), needs
to access the entire BF to answer any query. A MBF with 2 modules,
can answer ~91% of the empty queries only using the first module,
that is, 50% of the overall BF. Similarly, if we focus on the 7-module
MBF, ~74% of the queries terminate using only 2 modules (~29%
of the BF), while more than 94% of the queries terminate by using
4 modules (accessing 57% of the BF). Overall, as we increase the
number of modules, we can perform more fine granular memory
management. In practical implementations, we create MBFs with
two modules, since having a very small module size is not always
feasible as shown by Eq. (10).

Aggressively Skipping Modules Reduces the Impact of the
Number of the Modules. Figure 10 shows the results from the

N

-

D T

10 10 70 100 150
Memory budget (%)

(c) « = 1, uniform.

0-

040 70 100 150 040 70 100 15
Memory budget (%) Memory budget (%)
(a) « = 0, uniform. (b) @ = 0.5, uniform.

e

)
10 1070 100 150 10 10 70 100 150 10 10 70 100 150

Memory budget (%) Memory budget (%) Memory budget (%)
(d) @ = 0, normal. (e) @ = 0.5, normal. (f) « = 1, normal.
210 —5— state-of-art
—‘g ¢ 2 modules-skipF
= -8~ 3 modules-skip-F
g5 E_i 7 modules-skip-F
NS P Py S Py Py - - o

10 1070 100 150 10 10 70 100 150 10 10 70 100 150
Memory budget (%) Memory budget (%) Memory budget (%)

(g) a = 0, Zipfian. (h) « = 0.5, Zipfian. (i) @ = 1, Zipfian.
Figure 10: SHaMBa-eq-7 shows the number of modules has
a smaller impact if we allow to skip any number of modules
based on their utility.

same set of experiments with our full skipping algorithm () as we
vary the number of modules. SHaMBa—eq — ¥ evaluates each mod-
ule’s utility before accessing it, and skips it if there is not enough
benefit. We observe that SHaMBa—eq — # reduces the impact of
having more modules in the MBF, which further reinforces our
decision to have two modules in practical implementations.

5.1.3 Experiments with Partitioned Index/Filter.

In the experiment until now, we use a single BF per SST. In our
setting, the index amounts to eight 4KB data pages (index size is
P-K; thus, 32KB). If we use partitioned index and filter [43] to ensure
that the index of a partition fits in a page, we end up with eight
partitions. We now experiment with this setup, where each SST
file is partitioned eight ways, and the BF of each partition is 10KB,
spanning 3 pages (filter size is % - B - P/number_of_partitions;
i.e. 10KB). As a result, we can employ MBF on top of Partitioned
SST since Eq. (10) would still be satisfied. Since partitioning the BF
is already addressing memory pressure, we focus our experiments
on a smaller memory budget between 5% and 35%. We use MBFs
with two equally sized modules in these experiments.

SHaMBa Boosts Partitioned Index/Filter under Severe Mem-
ory Pressure. Figure 11 compares the number of I/Os per lookup of
the state-of-the-art with partitioned index and filters and SHaMBa
on partitioned index and filter. The results highlight that all variants
of SHaMBa reduce the number of I/Os, as they enable fine-grained
cache management. Note that SHaMBa-eq-F outperforms all vari-
ants as it aggressively skips modules with low utility, thus, reducing
I/Os per query under severe memory pressure.

5.2 Experiments with Monkey

In our experimentation, we also consider Monkey [12], that allo-
cates more bits per element in the shallower levels to aggressively
reduce their false positives with a very small penalty for the last
level, leading to fewer overall I/Os per query. Since the first few
levels have larger BFs, Monkey is also a good candidate for MBFs.

! o X
e B 25
510 15 20 25 30 35 5 10 15 20 25 30 35 5
Memory budget (%) Memory budget (%)
(a) « = 0, uniform. (b) @ = 0.5, uniform.

10 15 20 25 30 35
Memory budget (%)
(¢) @ = 1, uniform.

35 510 15 20 25 30
Memory budget (%)
(f) @ = 1, normal.

10 15 20 25 30 35 510 15 20 25 30
Memory budget (%) Memory budget (%)
(d) @ = 0, normal. (e) @ = 0.5, normal.

oF
25

35

1.00

partitioned
SHaMBa-cq

SHaMBa-cq-P
- SHaMBa-eq-F

10 15 20 25 30 35
Memory budget (%)
(h) a = 0.5, Zipfian.

5 10 15 20 25 30 35 5
Memory budget (%)
(g) « = 0, Zipfian.

get (%)
(i) @ = 1, Zipfian.

Figure 11: SHaMBa reduces I/Os per query for partitioned
index and filter, especially under severe memory pressure.

ha ~Seme
0 10 40 70 100 150
Memory budget (%)
(¢) @ = 1, uniform.

10 40 70 100 150 10 40 70 100 15
Memory budget (%) Memory budget (%)

(a) « = 0, uniform. (b) @ = 0.5, uniform.

10

£ - p— " - " =)

10 40 70 100 150 0 40 70 100 150 10 40 70 100 150
Memory budget (%) Memory budget (%) Memory budget (%)

(d) @ = 0, normal. (e) @ = 0.5, normal. (f) @ = 1, normal.

15

—B— Monkey

Pt = =t = 2
150 10 40 70 100 150
Memory budget (%)

(i) a = 1, Zipfian.

10 40 70 100 150 10 40 70 100
Memory budget (%) Memory budget (%)
(8) a = 0, Zipfian. (h) a = 0.5, Zipfian.

Figure 12: SHaMBa-eq reduces the lookup latency of Mon-

key under memory pressure.

SHaMBa Further Improves Monkey’s Performance. Because
of the large BFs, Monkey performs worse than state-of-the-art
under extreme memory pressure. Figure 12 shows that SHaMBa
improves Monkey’s lookup performance significantly. As shown in
Table 3 and Figure 9, the average number of modules accesses when
using two modules is close to one. Thus, the number of I/Os for
empty lookups is halved. For existing queries, SHaMBa-eq-P /F
reduce the filter accesses by avoiding modules with low utility.

5.3 SHaMBa with RocksDB

For our last experiment, we integrate our approach into RocksDB
(version 6.19.3), a state-of-the-art LSM engine, to showcase the ben-
efits of Modular Bloom filters. We run the same set of experiments
of Section 5.1.1, and report the average latency per lookup.

SHaMBa Accelerates Point Lookups. Figure 13 compares the
lookup latency of SHaMBa-eq to RocksDB engine. The experimental

1040 70 100 150 10 40 70 100 150 10 40 70 100 150
Memory budget (%) Memory budget (%) Memory budget (%)
(a) @ = 0, uniform. (b) @ = 0.5, uniform. (c) @ = 1, uniform.

N Py
0 40 70 100 150 10 40 70 100 150 0 40 70 100 150
Memory budget (%) Memory budget (%) Memory budget (%)

(d) @ = 0, normal. (e) « = 0.5, normal. (f) « = 1, normal.

-8~ RocksDB
¢+ SHaMBa-eq
-©- SHaMBa-eq-P
~> SHaMBa-cq-F

0.0 s 2
50

10 40 70 100
Memory budget (%)
(g) « = 0, Zipfian.

10 40 70 100 150 10 40 70 100 150
Memory budget (%) Memory budget (%)
(h) a = 0.5, Zipfian. (i) a = 1, Zipfian.
Figure 13: SHaMBa-eq reduces the lookup latency of
RocksDB under memory pressure.

S
©-0
150 10 40 70 100 150 10 40 70 100 150
Memory budget (%) Memory budget (%)
(b) @ = 0.5, uniform. (c) a = 1, uniform.

¥_5=

10 40 70 100
Memory budget (%)

(a) @ = 0, uniform.

10 40 70 100 150 10 40 70 100 150 10 40 70 100 150
Memory budget (%) Memory budget (%) Memory budget (%)
(d) @ = 0, normal. (e) « = 0.5, normal. (f) « = 1, normal.

—B— RocksDB
Ba-prop

K
-©- SHaMBa-prop-P

—& SHaMBa-prop-F

.5
&

) \Ln P Py

10 40 70 100 150 10 40 70 100 150 10 40 70 100 150
Memory budget (%) Memory budget (%) Memory budget (%)

(g) « = 0, Zipfian. (h) a = 0.5, Zipfian. (i) a = 1, Zipfian.

Figure 14: SHaMBa-prop improves the lookup performance
of RocksDB especially under severe memory pressure.

results using RocksDB show the same trends as Figure 6 for the
I/Os per lookup. Particularly, our skipping algorithms effectively
reduce the lookup latency when there is memory pressure, and
the benefits persist for both empty (a = 0) and non-empty queries
(¢ = 1.0). Similarly, Figure 14 compares the lookup latency of
SHaMBa-prop to RocksDB. The results are noisier because it is hard
to account perfectly accurately for the memory usage of RocksDB
and SHaMBa-prop relies on having the first module always in
memory. In the big picture, however, SHaMBa-prop significantly
reduces the lookup latency under memory pressure, especially
when also considering the full skipping algorithm.

SHaMBa Performs Best When Filters Are Larger Than In-
dexes. We now show how SHaMBa performs as we vary the rela-
tive size between the index and the filter. As discussed in Section 3,
the index size can vary dramatically, being anywhere between 0.1x
to 51.2x of the filter size. The relative size depends on the key size,

Memory Budget

EH40% EA70% 100% BA150%

Speedup
1

77777

32B (0.8x) 64B (1.6x) 96B (2.4x) 124B (3.1x)
Key size (Index size + Filter size)

Figure 15: SHaMBa leads to significant performance benefits

under memory pressure when the key size is 64B or smaller,

and the number of filter blocks is comparable to or larger

than the number of index blocks (entry size is 128B).

the entry size, and the bits-per-element of the BF. In this experiment,
we use as entry size 128B, and we vary the key size from 8B (where
the index is only 0.2x of the total BF size) and 124B (3.1x). The
workload consists of all-empty uniform queries (@ = 0). Figure 15
shows the speedup of SHaMBa-eq for different memory budgets
(10%-150%). When the filter size is much larger than the index block,
SHaMBa-eq leads to 2x speedup. However, since SHaMBa only tar-
gets the filter blocks, its benefits are reduced when the index size
grows bigger than the filter.

SHaMBa Also Benefits Faster Storage Devices. Our last exper-
iment shows that SHaMBa leads to performance improvements for
faster storage devices. We experiment with a standard SSD, a fast
PCle SSD, and a RAM-disk (that serves as an emulation of NVMe),
using uniform all-empty (a = 0) read queries. Figure 16 shows that
SHaMBa leads to 1.4X-2X performance improvement when com-
pared to the RocksDB baseline. We also note that the benefit is high
even in the RAM-disk case, showing that the utility-based block
skipping is beneficial even when slow I/Os are not the bottleneck.

6 RELATED WORK

Memory Allocation in LSM-Trees. A key aspect of LSM-Tree
tuning is memory allocation. Recent work has proposed new ways
to allocate memory across different levels [12], to allocate memory
between Bloom filters and the write buffer [13], and also to allocate
memory across multiple LSM-Trees [25]. In addition, recent work
has focused on the benefit of the block cache for LSM-Trees since
all the data pages are immutable and short-lived [44]. Contrary
to prior work on LSM memory management, SHaMBa proposes a
new variant of Bloom filters that allows for incremental, workload-
tailored memory utilization for Bloom filters, and more effective
navigation of the memory vs. performance trade-off.

Elastic Bloom Filter. The Elastic Bloom filter (EBF) [48] uses a
collection of BFs similar to the MBF we introduce. The segmentation
strategy employed by EBF exacerbates the hashing overhead that
has been gradually dominating key-value workloads. Hence, the
EBF increases the hashing cost as it requires a new hash digest
calculation for each filter segment. On the other hand, SHaMBa
reduces the overall hashing overhead by carefully re-using hash
calculations. Secondly, the EBF always uses all of its BFs, while
SHaMBa can skip modules with no importance. Lastly, the EBF
adversely impacts compaction, as for every SST file, each segment
needs to hash and index all keys of the SST file.

Membership-Test Filters. The various membership-test filters
developed recently [3, 5, 8, 11, 19, 32, 36, 40, 41] can be classified into

0.06
—H— RocksDB —
£

¢ SHaMBa-eq
N -©- SHaMBa-eq-P
1 Nk =G+ SHaMBa-eq-F

B = ;
g

(0.0

10 10 70 100 150 10 40

Memory budget (%) Memory budget (%)

(a) SSD (b) PCIe SSD

2
0.04

®,

Latency (ms)
Latency (ms)

.,
g J
70 100 15(10 40 70 100 150

Memory budget (%)

(c) RAM-disk

Figure 16: SHaMBa benefits remain as we vary storage de-
vices from an SSD, to a fast PCle SSD, to a RAM-disk.

BF variants and fingerprint-based variants. Generally, BF variants
do not store information about inserted elements while fingerprint-
based variants keep track of the fingerprint of elements that can
help with in-place updates and deletions, which are not needed for
SST files, since they are immutable. Below we compare our approach
with the most relevant representative from each category.

Blocked Bloom Filter. A Blocked Bloom filter (BBF) [32], similar
to MBF, divides the BFs into multiple blocks. While MBF uses all
partitions to insert or query keys, BBF uses only one partition in
order to reduce the number of memory probes to random locations
generated by multiple hash digests. The partition to use for a specific
key is selected by the first hash calculation. To maximize access
locality, the size of each partition is a few cache lines. BBFs are
ideal for reducing data movement from L3 to L1.

Cuckoo Filter. A Cuckoo filter [19] is a fingerprint-based filter
based on Cuckoo hashing. It stores the fingerprint of each element
in a bucket, and each bucket stores at most b signatures. Although
Cuckoo hashing has a constant expected cost per insertion, even
considering the rehashing case, it assumes the use of two (c, k)-
universal functions. On the contrary, practical BF implementations
use only one expensive hash function, and MBFs use only one
hash function for an entire query. Another benefit of using Cuckoo
filters is the ability to update in-place (with a small probability of
failure) and to delete, however, these features are not necessary
for supporting LSM-Trees. Further, Cuckoo filters face the risk
of insertion failure, which would require a restart of the SST file
creation process (e.g., at compaction time), and a rehash anew with
a different hash function, which again, cannot guarantee successful
insertion. Overall, the complexity of implementing and deploying
Cuckoo filters in LSM-Trees outweigh their benefits.

7 CONCLUSIONS

In this paper, we introduce SHaMBa, a novel LSM-based key-value
engine that is specifically designed to address performance loss due
to memory pressure. When the available memory is not enough to
hold all filters, using them hurts performance. This trend is expected
to continue as data size increases. To address this problem, we
propose Modular Bloom filters (MBFs), a BF variant that consists of
multiple modules with the same aggregate size, the same aggregate
false positive, and the same maximum number of probes per query.
MBFs enable smooth navigation of the memory vs. performance
trade-off through their modules that can be queried independently.
Overall, using MBFs and a utility-based module skipping strategy,
SHaMBa exploits the available memory more efficiently to offer
better performance than the state of the art under memory pressure.

Acknowledgements. This work is funded by NSF Grants IIS-
2144547 and 1IS-1850202, a Facebook Award, and a Meta gift.

REFERENCES

(1]

[12]

[13

[14]

[15]

[16

[23

[24

[25

Ildar Absalyamov, Michael J Carey, and Vassilis J Tsotras. 2018. Lightweight
Cardinality Estimation in LSM-based Systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 841-855.

Wail Y Alkowaileet, Sattam Alsubaiee, and Michael J Carey. 2020. An LSM-based
Tuple Compaction Framework for Apache AsterixDB. Proceedings of the VLDB
Endowment 13, 9 (2020), 1388-1400.

Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguica, and David Hutchison.
2007. Scalable Bloom Filters. Inform. Process. Lett. 101, 6 (mar 2007), 255-261.
Apache. 2021. Cassandra. http://cassandra.apache.org (2021).

Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C.
Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P. Spillane,
and Erez Zadok. 2012. Don’t Thrash: How to Cache Your Hash on Flash. Pro-
ceedings of the VLDB Endowment 5, 11 (2012), 1627-1637.

Burton H Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (1970), 422-426.

Edward Bortnikov, Anastasia Braginsky, Eshcar Hillel, Idit Keidar, and Gali Sheffi.
2018. Accordion: Better Memory Organization for LSM Key-Value Stores. Pro-
ceedings of the VLDB Endowment 11, 12 (2018), 1863-1875.

Andrei Z. Broder and Michael Mitzenmacher. 2002. Network Applications of
Bloom Filters: A Survey. Internet Mathematics 1 (2002), 636—646.

Mark Callaghan. 2016. Compaction priority in RocksDB.
http://smalldatum.blogspot.com/2016/02/compaction-priority-in-rocksdb.html
(2016).

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2006.
Bigtable: A Distributed Storage System for Structured Data. In Proceedings of
the USENIX Symposium on Operating Systems Design and Implementation (OSDI).
205-218.

Adina Crainiceanu. 2013. Bloofi: a hierarchical Bloom filter index with applica-
tions to distributed data provenance. In Proceedings of the International Workshop
on Cloud Intelligence (CloudI). 4:1-4:8.

Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal
Navigable Key-Value Store. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 79-94.

Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2018. Optimal Bloom Filters
and Adaptive Merging for LSM-Trees. ACM Transactions on Database Systems
(TODS) 43, 4 (2018), 16:1-16:48.

Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-Offs for
LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous Merging.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data. 505-520.

Niv Dayan and Stratos Idreos. 2019. The Log-Structured Merge-Bush & the
Wacky Continuum. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD). 449-466.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-value Store.
ACM SIGOPS Operating Systems Review 41, 6 (2007), 205-220.

Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Sa-
vor, and Michael Strum. 2017. Optimizing Space Amplification in RocksDB.
In Proceedings of the Biennial Conference on Innovative Data Systems Research
(CIDR).

Facebook. 2021. RocksDB. https:/github.com/facebook/rocksdb (2021).

Bin Fan, David G Andersen, Michael Kaminsky, and Michael Mitzenmacher.
2014. Cuckoo Filter: Practically Better Than Bloom. In Proceedings of the ACM
International on Conference on emerging Networking Experiments and Technologies
(CoNEXT). 75-88.

Google. 2021. LevelDB. https://github.com/google/leveldb/ (2021).

HBase. 2013. Online reference. http://hbase.apache.org/ (2013).

Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying
Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang Li. 2019. X-Engine: An
Optimized Storage Engine for Large-scale E-commerce Transaction Processing.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data. 651-665.

Taewoo Kim, Alexander Behm, Michael Blow, Vinayak Borkar, Yingyi Bu,
Michael J. Carey, Murtadha Hubail, Shiva Jahangiri, Jianfeng Jia, Chen Li, Chen
Luo, Ian Maxon, and Pouria Pirzadeh. 2020. Robust and efficient memory man-
agement in Apache AsterixDB. Software - Practice and Experience 50, 7 (2020),
1114-1151.

Hyesook Lim, Jungwon Lee, and Changhoon Yim. 2015. Complement Bloom
Filter for Identifying True Positiveness of a Bloom Filter. IEEE Communications
Letters 19, 11 (2015), 1905-1908.

Chen Luo. 2020. Breaking Down Memory Walls in LSM-based Storage Systems.
In Proceedings of the ACM SIGMOD International Conference on Management of

[26]

[27

[28

[31

[32

[33

[34

[35

'S
S

[37

[38

[39

[40

[45]

[46

[47

[48

[49

o
=

Data. 2817-2819.

Chen Luo and Michael J Carey. 2019. On Performance Stability in LSM-based
Storage Systems. Proceedings of the VLDB Endowment 13, 4 (2019), 449-462.
Chen Luo and Michael J. Carey. 2020. LSM-based Storage Techniques: A Survey.
The VLDB Journal 29, 1 (2020), 393-418.

Sigiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin, and
Stratos Idreos. 2020. Rosetta: A Robust Space-Time Optimized Range Filter for
Key-Value Stores. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 2071-2086.

John C. McCallum. 2022. Historical Cost of Computer Memory and Storage.
https://jcmit.net/mem2015.htm (2022).

Ju Hyoung Mun, Jungwon Lee, and Hyesook Lim. 2017. A new Bloom filter
structure for identifying true positiveness of a Bloom filter. In Proceedings of the
IEEE International Conference on High Performance Switching and Routing (HPSR).
1-5.

Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.
The log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351-385.
Felix Putze, Peter Sanders, and Johannes Singler. 2009. Cache-, hash-, and space-
efficient bloom filters. ACM Journal of Experimental Algorithmics 14 (2009).

Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson. 2017. SlimDB: A Space-
Efficient Key-Value Storage Engine For Semi-Sorted Data. Proceedings of the
VLDB Endowment 10, 13 (2017), 2037-2048.

RocksDB. 2020. Universal Compaction. https:/github.com/facebook/rocksdb/wiki/Universal-

Compaction (2020).

RocksDB. 2021. Block Cache. https://github.com/facebook/rocksdb/wiki/Block-
Cache (2021).

Christian Esteve Rothenberg, Carlos Macapuna, Fabio Verdi, and Mauricio Maga-
lhaes. 2010. The deletable Bloom filter: a new member of the Bloom family. IEEE
Communications Letters 14, 6 (jun 2010), 557-559.

Subhadeep Sarkar, Tarikul Islam Papon, Dimitris Staratzis, and Manos Athanas-
soulis. 2020. Lethe: A Tunable Delete-Aware LSM Engine. In Proceedings of the
ACM SIGMOD International Conference on Management of Data. 893-908.
Subhadeep Sarkar, Dimitris Staratzis, Zichen Zhu, and Manos Athanassoulis. 2021.
Constructing and Analyzing the LSM Compaction Design Space. Proceedings of
the VLDB Endowment 14, 11 (2021), 2216-2229.

Kulesh Shanmugasundaram, Hervé Bronnimann, and Nasir D Memon. 2004.
Payload attribution via hierarchical bloom filters. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS). 31-41.

Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. 2012. Theory
and Practice of Bloom Filters for Distributed Systems. IEEE Communications
Surveys & Tutorials 14, 1 (2012), 131-155.

Xiujun Wang, Yusheng Ji, Zhe Dang, Xiao Zheng, and Baohua Zhao. 2015. Im-
proved Weighted Bloom Filter and Space Lower Bound Analysis of Algorithms
for Approximated Membership Querying. In Proceedings of the International
Conference on Database Systems for Advanced Applications (DASFAA). 346-362.
WiredTiger. 2021. Source Code. https://github.com/wiredtiger/wiredtiger (2021).
Maysam Yabandeh. 2017. Partitioned Index/Filters.
http://rocksdb.org/blog/2017/05/12/partitioned-index-filter.html (2017).

Lei Yang, Hong Wu, Tieying Zhang, Xuntao Cheng, Feifei Li, Lei Zou, Yujie
Wang, Rongyao Chen, Jianying Wang, and Gui Huang. 2020. Leaper: A Learned
Prefetcher for Cache Invalidation in LSM-tree based Storage Engines. Proceedings
of the VLDB Endowment 13, 11 (2020), 1976-1989.

MyungKeun Yoon, JinWoo Son, and Seon-Ho Shin. 2014. Bloom tree: A search
tree based on Bloom filters for multiple-set membership testing. In Proceedings
of the IEEE Conference on Computer Communications (INFOCOM). 1429-1437.
Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G Andersen, Michael
Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. SuRF: Practical Range
Query Filtering with Fast Succinct Tries. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 323-336.

Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu, Nanlong Yu, Gui Huang,
Tieying Zhang, Dengcheng He, Feifei Li, Wei Cao, Zhongdong Huang, and Jian-
ling Sun. 2020. FPGA-Accelerated Compactions for LSM-based Key-Value Store.
In Proceedings of the USENIX Conference on File and Storage Technologies (FAST).
225-237.

Yueming Zhang, Yongkun Li, Fan Guo, Cheng Li, and Yinlong Xu. 2018. ElasticBF:
Fine-grained and Elastic Bloom Filter Towards Efficient Read for LSM-tree-based
KV Stores. In Proceedings of the USENIX Conference on Hot Topics in Storage and
File Systems (HotStorage).

Wenshao Zhong, Chen Chen, Xingbo Wu, and Song Jiang. 2021. REMIX: Efficient
Range Query for LSM-trees. In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST). 51-64.

Zichen Zhu, Ju Hyoung Mun, Aneesh Raman, and Manos Athanassoulis. 2021. Re-
ducing Bloom Filter CPU Overhead in LSM-Trees on Modern Storage Devices. In
Proceedings of the International Workshop on Data Management on New Hardware
(DAMON). 1:1-1:10.

	Abstract
	1 Introduction
	2 Background on LSM-Trees
	3 Motivation
	4 Modular Bloom Filters
	4.1 The Structure of a Modular Bloom filter
	4.2 Modular Bloom Filters In LSM-trees

	5 Experimental Evaluation
	5.1 MBFs Under Memory Pressure.
	5.2 Experiments with Monkey
	5.3 SHaMBa with RocksDB

	6 Related Work
	7 Conclusions
	References

