Efficiently Compiling Dynamic Code for
Adaptive Query Processing

Tobias Schmidt Philipp Fent Thomas Neumann
TU Munich TU Munich TU Munich
tobias.schmidt@in.tum.de fent@in.tum.de neumann@in.tum.de
ABSTRACT techniques can choose different implementations for evaluating

Query optimization is one of the key challenges in modern database
systems. With sophisticated data processing techniques like query
compilation or vectorization, a good execution plan is essential for
high performance. Yet, finding the optimal implementation for a
query upfront is difficult as optimizers must rely on cardinality
estimations and coarse cost models for the underlying hardware.
Adaptive Query Processing overcomes these limitations: We evalu-
ate different implementations for the same query during execution
and choose the best-performing implementation based on accurate
runtime measurements.

However, compiling database systems cannot easily modify the
generated code, and recompiling queries is prohibitively expensive.
We propose a novel compilation technique — Dynamic Blocks —
that avoids recompilations by embedding code fragments for all
variants into the generated code. We integrate the approach into our
research system Umbra and implement two dynamic optimizations
for reordering joins and adapting selections during execution. Our
results show that Adaptive Query Processing improves the runtime
of data-centric code by more than 2x.

1 INTRODUCTION

Hardware trends like the increase of main-memory sizes and the
ever-growing number of execution threads per machine paved the
way for new data processing techniques and allows for more com-
plex data processing tasks and workloads. In addition, different
hardware platforms can exhibit diverse performance characteris-
tics that affect the execution times. Nevertheless, database systems
rely on heuristic and coarse cost models to optimize and evaluate
queries. For example, the cache sizes, memory access speed, and in-
struction throughput vary dramatically from small and lightweight
devices to high-performance server processors. Hence, query en-
gines are susceptible to data skew and misestimations, which can,
for example, result in suboptimal join orders [26]. Taking all these
factors into consideration and finding the optimal implementation
for a query in advance is challenging.

High-performance data processing workloads, therefore, require
more adaptive techniques that postpone optimization decisions
and make them at run-time when accurate statistics and cost in-
formation are available [35]. Adaptive Query Processing (AQP)

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission
by emailing info@vldb.org. Copyright is held by the owner/author(s). To Appear
in the 13th Workshop on Accelerating Analytics and Data Management (ADMS’22),
September 2022, Sydney, Australia.

relational operators or expressions while executing a query and
change the execution order of filter predicates and joins [4, 12, 38].
Besides the potential performance improvements, adaptive process-
ing allows the execution engine to react to the underlying hardware
platform and changing characteristics in the workload.

Example: Consider the following query that filters the 1ineitem
relation, similar to Q12 of the TPC-H benchmark, using two predi-
cates and counts the number of qualifying tuples:

select count(x)

from lineitem

where 1_commitdate < 1l_receiptdate
and 1_shipdate < 1_commitdate

Although the query looks simple and consists of few operations
(a table scan, two predicates, and one aggregation), finding the
optimal implementation is not that easy. Figure 1 shows three
possible variants for evaluating the filter condition. The first two
implementations branch after each predicate but with different
evaluation orders, and the third variant evaluates both conditions
together.

Variant () is the result of the commonly used heuristic to order
predicates by selectivity. Since we already filter many tuples after
the first predicate, we load the least amount of data from the base
table and execute the fewest instructions. However, this comes at
the cost of frequent CPU branch mispredictions [39]. Table 1 shows
these performance characteristics for each of the variants.

While (&) does less work, the total execution time is highest
among all implementations due to branch misses. Finding a heuris-
tic that covers all cases is almost impossible. It requires accurate
statistics for each predicate, which is already challenging due to
correlations [19] and precise estimates of the number of executed
instructions and cycles. For instance, string comparisons or like
predicates execute far more instructions, and branching after each
condition might be beneficial again.

Most query execution engines either fall back to the simple
heuristic that orders the predicates by selectivity and branches
immediately or use vectorized execution with a higher instruction
overhead for complex predicates [9]. Our example illustrates that
the execution time — our ultimate optimization goal — has non-
trivial and hardware-dependent connections to the generated code.
While simple heuristics might work for many queries, they already
fail for moderate challenges like our example, where (A) is 1.5x
slower than (C). As shown by Dreseler et al., evaluating predicates
is one of the major choke points in the TPC-H [13]. To confidently
find the best implementation for any query, we need to gather
empiric measurements instead of blindly trusting a heuristic. With

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

for 1 in lineitem: for 1 in lineitem:

if not 1l_shipdate < 1_commitdate:

continue 51% continue
if not 1_commitdate < l_receiptdate:

continue continue
counter++ counter++

Variant (A) : Separate branches

if not 1_commitdate < 1l_receiptdate:

if not 1_shipdate < 1_commitdate:

Variant (B) : Separate branches

for 1 in lineitem:
if not (l_shipdate < 1_commitdate
and 1_commitdate < 1l_receiptdate):
continue

counter++
Variant (C) : Combined branch

Figure 1: Three different implementations for filtering tuples in a table scan on lineitem. Standard query optimizers will use
(A) as it processes the least tuples. However, depending on the processed data and the underlying hardware platform,) or (C)

perform better.

Table 1: Performance characteristics end the overall execu-
tion time of the three implementations from Figure 1 on
TPC-H SF 10 (the hardware counters are normalized to the
number of scanned tuples).

Variant branch-misses instructions loads exec. time
® 0.63 / tpl 7.62/tpl 2.85/tpl 18.4ms
0.58 / tpl 7.91/tpl 3.00/tpl 17.7ms
© 0.13/tpl 11.67/tpl 337/tpl 12.7ms

AQP, we collect and evaluate these statistics during execution and
avoid system-dependent bias.

Micro Adaptivity [35] and Permutable Compiled Queries [29] re-
cently demonstrated the practicality of AQP in modern database
systems. Both techniques follow the same principle: vectorized
query engines use so-called primitives to collectively process a
block or vector of tuples. Changing the function pointers to the
primitives during execution makes it possible to choose different
implementations and adapt the query plan at run-time. During exe-
cution, both systems evaluate different variations of the plan and
choose the best-performing implementation to process most of the
data. However, this limits the execution model to vector-at-a-time
processing since calling primitives for every tuple results in a sig-
nificant performance overhead. Compiling database systems, like
HyPer [21], Amazon Redshift [2], Hyrise [14], or Umbra [31], must
recompile the query plan to change the operators’ implementations.

In our paper, we propose a novel query compilation technique
called Dynamic Blocks that avoids recompilations and generalizes
Adaptive Query Processing to any compiling database system, es-
pecially also with tuple-at-a-time processing. Our approach allows
exchanging operator implementations, reordering code fragments,
and efficiently generates optimized machine code during query exe-
cution. Different dynamic block types augment a program’s control
flow before execution but after compiling it. Developers can use
this mechanism to specify different implementations for the same
query and choose one implementation later.

To demonstrate the practicality of our technique, we integrated it
into the research database system Umbra [31] and implemented two
adaptive optimizations for reordering joins and adapting selections.
Umbra’s execution engine first explores different variants of a query
and records their runtime. Afterward, the best-performing imple-
mentation is used, allowing us to find the optimal query execution

strategy based on accurate measurements. Our experiments show
that the Dynamic Blocks framework improve execution times by up
to 2x, with almost no overhead and minor performance penalties.

The rest of this paper is organized as follows: We first give a brief
overview of prior work on AQP in database systems before introduc-
ing our novel Dynamic Blocks framework and its integration into
Umbra’s existing code generation process in Section 3. Section 4 dis-
cusses how Umbra finds the optimal variant during execution and
exploits it. Afterward, Section 5 introduces two adaptive optimiza-
tions and discusses their implementation using Dynamic Blocks. In
Section 6, we evaluate the new framework and the benefits of AQP
on four analytical benchmarks.

2 RELATED WORK

AQP dates back to the Ingres database’s one-variable query pro-
cessor [43]. Since then, new approaches have been proposed, and
several surveys were conducted [11, 12, 18]. To put our technique
into contrast, we rely on the taxonomy of AQP systems of Babu
and Bizarro [4]:

Plan-based systems re-optimize the query execution plan if the
observed behavior deviates from the estimations. We further dis-
tinguish two implementation styles in these systems: (a) Mid-query
Re-optimization uses the query optimizer to generate a new (better)
plan during query execution, and (b) Parametric Query Optimization
initially builds multiple optimal plans for different situations and
chooses the best plan at run-time.

Re-optimizing systems adapt the query plan while executing it.
The query optimizer identifies key points in the plan with high
inaccuracy potential and collects statistics on data distribution and
intermediate result sizes. The system changes the plan if the gath-
ered statistics differ significantly from the initial estimates [20]. The
effectiveness of Mid-query Re-optimization has been demonstrated
in both SQL Server [32] and PostgreSQL [34].

Parametric Query Optimization prepares a set of optimal can-
didate plans for different parameters like predicate selectivities,
memory usage, or user input. A special choose-plan operator selects
the best candidate at run-time and executes it [6, 8, 15, 17]. A major
drawback of this technique is the expensive analysis for finding
the set of plans as the search space grows exponentially with the
number of parameters.

Routing-based systems delegate the decision of how to process
tuples to the runtime system. The optimizer inserts special, adaptive
operators into the plan that can evaluate each tuple independently

L)

Alternatj%/\

Variant 1 Variant 2 Variant 3

— =

)

(a) Alternative block

Optional Reorder
<~
T Variant 1 N_
:_\Za_r lar_lt_l_:l \ Variant 2
S~ >
(b) Optional block (c) Reorder block

Figure 2: Dynamic Blocks allow intricate control flow changes at runtime.

using different implementations or execution orders. This tech-
nique avoids re-invocations of the query optimizer, and can adapt
operators and execution pipelines while evaluating them [18].

Avnur and Hellerstein introduced the adaptive eddy operator
to change the execution order of pipelined operators. It adaptively
re-routes the tuples during execution to different operators. Several
systems have adopted this technique to correct misestimation and
react to changing data distributions [10, 36, 41].

Modern systems of the last decade shifted the execution paradigm
from Volcano-style iteration [16] with tuple-at-a-time processing to
vectorized execution [7] or compilation [30]. This made it difficult to
hide the performance overhead of routing-based AQP. Nevertheless,
Raducanu et al. and Perron et al. demonstrated the practicality of
tuple-routing techniques in combination with vectorization: Both
systems, VectorWise and NoisePage, adapt the execution not for a
single tuple but for an entire block of hundreds of tuples [29, 35].
Rosenfeld et al. used the Micro Adaptivity approach for adaptively
optimizing aggregations and selections on heterogeneous devices
including GPUs [38].

However, compiling database systems with tuple-at-a-time pro-
cessing, like HyPer or Umbra, cannot easily employ AQP without
compiling query plans multiple times. Our Dynamic Blocks compi-
lation framework tackles exactly this problem: It generates dynamic
code that can be adapted at run-time without sacrificing perfor-
mance or recompiling queries. As the Permutable Compiled Queries
technique in NoisePage [1], our approach supports routing-based
optimizations that adapt implementations or the execution order
of pipelined operators.

3 DYNAMIC BLOCKS

Tuple-routing techniques adapt relational operators or pipelines
while executing them. Dynamic Blocks generalize routing-based
AQP to compiling database systems while avoiding recompilations.
As stated in the introduction, we use our research system Um-
bra [31], which generates code according to the producer-consumer
model and uses data-centric processing [30]. Unlike NoisePage or
VectorWise, Umbra evaluates the entire pipeline for each tuple, min-
imizing tuple materialization points and keeping values in machine
registers (or on the stack). Hence, existing AQP techniques from
vectorized query engines would introduce expensive function calls
on a per-tuple basis. To maintain the data-centric approach, we

will not manipulate function pointer arrays but adapt the gener-
ated code itself. The Dynamic Blocks framework generates code
fragments for all variants of a query and reorders or exchanges
them during execution. This approach enables both high-level plan
changes and low-level optimizations, like reordering operators or
switching between filter implementations.

In the following section, we first describe the centerpiece of
our novel code generation technique, the so-called Dynamic Blocks.
Afterward, we discuss their integration into Umbra’s existing com-
pilation process and custom intermediate representation. Finally,
Section 3.3 presents an optimized compiler for Dynamic Blocks.

3.1 Block Types

Dynamic Blocks follow the idea of generating linear code for all
options. Instead of compiling new code for every variation of a
pipeline, e.g., the three code snippets from Figure 1, we embed all
variants into a single program to avoid duplicate work for code gen-
eration and unnecessary recompilations. Existing code generation
frameworks like LLVM [24] or Umbra’s Tidy Tuples [22] lack the
abstraction to describe the different implementation alternatives.
We, therefore, propose three types of Dynamic Blocks that augment
the control flow before executing a program but after compiling it.
Figure 2 illustrates the semantics of the available block types:

Alternative Blocks choose between different, equivalent im-
plementations. Each alternative sub-block contains the code
for one of the possible variants.

Optional Blocks adaptively enable or disable the code in the
variant during execution.

Reorder Blocks can be used to change the evaluation order
of commutative logic, e.g., join probes or predicates. They
reorder the contained code fragments, resulting in n! varia-
tions of the function.

With Dynamic Blocks, we can merge the three implementations
from Figure 1 into a single program in Figure 3. While the table
scan in line 1 and the group by operator in line 10 are compiled,
as usual, we now place the filter predicates in a dynamic block. In
the top-level variants, we distinguish between the single-branch
implementations (Variant 1) and the versions with a branch after
each predicate (Variant 2). The second variant then contains another
nested dynamic block that changes the evaluation order of the filters
during execution. We use a reorder block where the Variant 2.1

1 for 1 in lineitem:

Alternative Block Variant 1
2 if not (l_shipdate < 1_commitdate
3 and 1_commitdate < 1l_receiptdate):
4 continue
Variant 2
Reorder Block Variant 2.1
5 if not 1l_shipdate < 1l_commitdate:
6 continue
Variant 2.2
7 if not 1_commitdate < 1l_receiptdate:
8 continue
10 counter++

Figure 3: Adaptive implementation with Dynamic Blocks for
the example query and its three implementations.

evaluates the predicate 1_commitdate < 1_receiptdate, and
Variant 2.2 filters the tuples using 1_shipdate < 1_commitdate.
This example also showcases the composability of our Dynamic
Blocks: We can combine and nest them arbitrarily deep and still
integrate them into the regular surrounding code.

While these three block types in isolation offer only limited
functionality, a combination of multiple blocks is flexible enough
to express many adaptive optimizations. In Section 5, we discuss
applications of Dynamic Blocks that integrate well into the existing
code generated by Umbra. In addition, all block types can easily be
lowered to Umbra’s internal code representation.

3.2 Integration into Umbra’s Intermediate
Representation

To transform the high-level concept of Dynamic Blocks into dy-
namic code, we need to represent them in the code our system
generates. Umbra first translates the query execution plan into
a custom intermediate representation (IR) and then lowers the
generated code to an executable program. Umbra’s IR is strongly
influenced by LLVM’s intermediate representation [24] and can
be described as a subset with database-specific operations. Several
aspects are identical, including using the static single assignment
form [37] and dividing the program into basic blocks based on ter-
minating instructions (e.g., branches or returns). Especially the SSA
form simplifies lifetime analysis and facilitates optimizations such
as constant propagation or dead code elimination.

We now connect the Dynamic Blocks from Section 3.1 to Umbra’s
IR. As mentioned before, a dynamic block consists of one or more
variants, which contain code fragments for adapting the execution.
To integrate well with the existing IR, we always assign entire
basic blocks to variants and only mark the transitions between
these as dynamic with a dynbr instruction. Since it replaces regular
block transitions, this representation allows Dynamic Blocks to
contain regular basic blocks and other dynamic blocks, e.g., to
represent the nesting of Variant 2.1 from Figure 3. We maintain
this connection between high-level blocks and low-level IR in two
additional management structures: One that tracks the Dynamic
Blocks and their variants and a second structure that maps basic
and dynamic blocks to variants.

%1_commitdate_data = getelementptr int8 %data, i64 3932160
%1_commitdate = load int32 %1_commitdata_data, %localTid
5 dynbr alternative .enterAlternativeBlock .leaveAlternativeBlock

1 A

2 .loopTuples:
3

4

Alternative Block Variant 1

7 .enterAlternativeBlock:

8 %1_shipdate_data = getelementptr int8 %data, i64 3670016

9 hipdate = load int32 %1_shipdate_data, %localTid
licatel = cmpult i32 %1_shipdate, %1_commitdate
ptdate_data = getelementptr int8 %data, 164 4194304
ptdate = load int32 %1_receiptdate_data, %localTid

13 2 = cmpult i32 %1_commitdate 1_receiptdate
14 jition = and bool %predicatel, %predicate2
5 condbr %condition .continue .continueScan
7 .continue:
8 dynbr alternative .nextVariant .leaveAlternativeBlock
20 .nextVariant: Variant 2
21 dynbr reorder .enterReorderBlock .leaveReorderBlock
22
Reorder Block Variant 2.1
23 .enterReorderBlock:
24 %l_shipdate_datal = getelementptr int8 %data, 164 3670016
25 %1_shipdatel = load int32 shipdate , %localTid
26 scondition1 = cmpult i32 %1_shipdatel, %1_commitdate
27 condbr %conditionl .continue_1 .continueScan
28
29 .continue_1:
30 dynbr reorder .nextVariant_1 .leaveReorderBlock
31
32 .nextVariant_1: Variant 2.2
33 41_receiptdate_datal = getelementptr int8 %data, i64 4194304
34 %1_receiptdatel = load int32 %l_receiptdate_datal, %localTid
35 %condition2 = cmpult i32 %1_commitdate, %l_receiptdatel
36 condbr %condition2 .continue_2 .continueScan
37
38 .continue_2:
39 dynbr reorder .leaveReorderBlock .leaveReorderBlock
40
4 .leaveReorderBlock:
42 dynbr alternative .leaveAlternativeBlock .leaveAlternativeBlock
43
44 .leaveAlternativeBlock:
45 L.
46 .continueScan:

47

Figure 4: Dynamic IR code for evaluating the filter predicates
from Figure 3 with Dynamic Blocks generated by Umbra.

Figure 4 shows the generated code for our example in Umbra’s
IR. We only show the relevant part responsible for adaptively eval-
uating the filter predicate: As before, Variant 1 contains the code
branching once for both filter conditions, and Variant 2 reorders the
predicates using a reorder block. Note that the high-level semantics
of the Dynamic Blocks from the last section still apply: It is possible
to execute either Variant 1 or Variant 2 and both variations com-
pute the same result. Similarly, the reorder block allows switching
Variant 2.1 and 2.2, again without changes to the semantics of the
program.

The only change we made to the generated code itself is the
special control-flow instructions dynbr, which denote the start and
end of a variant code fragment. This new instruction is conceptu-
ally similar to an unconditional branch but additionally marks the
variant’s start and end block. E.g., the dynbr in line 5 of Figure 4
references the blocks enclosing the alternative block that spans
from line 7 to line 44. Due to this design, we can reuse most of
Umbra’s existing code generation infrastructure. We provide helper
functions that automatically emit dynbr instructions when starting
and closing Dynamic Blocks or switching between the variants. We
thus only need to ensure correct semantics for the implementation
of dynamic operators, with little syntactic overhead.

Overall, our Dynamic Blocks require few changes to the code
base, integrate seamlessly into existing code with a familiar syntax,
and introduce almost no additional instructions. We now generate
optimized machine code that can be efficiently adapted.

3.3 Compiling Dynamic Code

After introducing our novel code generation approach, we now
describe how to efficiently translate the Dynamic Blocks to assem-
bly code. We propose two novel compilation techniques that avoid
recompilation and minimize the runtime overhead to generate new
variants. While the first one is specific to Umbra’s infrastructure, we
generalize it to work on any language supporting indirect branches,
e.g., C with computed gotos (supported by GCC or Clang), at the
cost of slightly less optimal code.

Before presenting the compilation techniques, we briefly sketch
how Umbra usually compiles query plans to machine code. Like its
predecessor HyPer, Umbra uses the LLVM compilation framework
to generate machine code [30]. However, LLVM’s compilation la-
tency can become a significant performance bottleneck and stall the
execution. Umbra, therefore, implements its own x86 instruction
generator to translate IR programs to machine code, the Flying
Start compiler [22]. Compared to LLVM, the Flying Start compiler
achieves very low compilation times at the cost of less optimized
code. Simultaneous to processing the first chunks of tuples with
code generated by Flying Start, Umbra also compiles the query a
second time with LLVM to profit from more expensive optimiza-
tions. Once this second compilation pass is finished, we switch to
the optimized program using Adaptive Execution [23].

With Umbra’s custom Flying Start compiler, we can integrate
dynamic blocks directly into the generated assembly code. We emit
instructions for all variants in the IR Program and embed them into
the executable while keeping track of the dynamic blocks. Figure 5
shows the generated assembly instructions for the IR program
from Figure 4. While translating the IR program to machine code,
we ensure that the dynamic blocks’ semantics still apply, i.e., it is
possible to reorder or exchange the machine code fragments.

The Dynamic Blocks blend in well with Umbra’s existing com-
piler infrastructure, and with a few changes, we can lower them to
optimized machine code. For the Flying Start compiler, the follow-
ing three modifications were necessary:

(1) We modified the block placement algorithm to keep all basic
blocks of a dynamic block next to each other.

(2) The Flying Start compiler uses an interval-based liveness
algorithm to determine how long IR values must be alive. In
combination with reorder blocks, the lifetime of IR values
must be extended to the end of the dynamic block.

(3) The register allocator also has to consider dynamic blocks.
At the end of every variant, we restore the register assign-
ment at the start of the dynamic block.

After this first pass, the generated machine code contains frag-
ments for all variants and dynamic blocks, although we might not
need them when executing a specific variation of the program. For
instance, Variant (B) of our initial example (cf. Figure 1) uses only
code fragments from Variant 2 and switches the reorder block’s
variants. Hence, we need a second pass that assembles the relevant
variants and puts them into the correct order.

.loopTuples:

1

2

3 mov rbx, qword ptr [rsp+72]

4 mov r12, gword ptr [rsp+16]

5 mov ebx, dword ptr [rbx+r12x4+3932160] # %1_commitdate

6
Alternative Block Variant 1

7 .enterAlternativeBlock:

8 mov r13, qword ptr [rsp+72]

9 mov r13d, dword ptr [r13+r12x4+3670016] # %1_shipdate

10 cmp r13d, ebx

11 setb ri3b # %predicatel

12 mov r14, qword ptr [rsp+72]

13 mov r14d, dword ptr [r14+r12x4+4194304] # %1 receiptdate

14 cmp ebx, ril4d

15 setb ri5b # %predicate2

16 and ri13b, ri15b # %condition

17 cmp r13b, 1

18 jnz .continueScan

19

20 .nextVariant: Variant 2
Reorder Block Variant 2.1

21 .enterReorderBlock:

22 mov r12, gword ptr [rsp+72]

23 mov r13, qword ptr [rsp+16]

24 mov ri12d, dword ptr [r12+r13%4+3670016] # %1 _shipdatel

25 cmp ri2d, ebx # %condition1

26 jae .continueScan

27

28 .nextVariant_1: Variant 2.2

29 mov r12, qword ptr [rsp+72]

30 mov r13, qword ptr [rsp+16]

31 mov r12d, dword ptr [r12+r13x4+4194304] # % eiptdate

32 cmp ebx, ri2d # dition2

33 jae .continueScan

34

35 .leaveReorderBlock:

36 .leaveAlternativeBlock:

38 .continueScan:

Figure 5: Dynamic assembly code by the Flying Start com-
piler for the filter predicates. We execute either Variant 1
or Variant 2 and the code fragments in Variant 2.2 and Vari-
ant 2.2 can be switched.

1 S
2 .loopTuples:

3 mov rbx, qword ptr [rsp+72]

4 mov r12, qword ptr [rsp+16]

5 mov ebx, dword ptr [rbx+r12x4+3932160] # %1_commitdate

.nextVariant:

7 Variant 2
8 .nextVariant_1:
9

Variant 2.2
mov r12, qword ptr [rsp+72]

mov r13, gword ptr [rsp+16]

1 mov r12d, dword ptr [r12+r13x4+4194304] # %
2 cmp ebx, ri2d #
jae .continueScan

eceiptdate
dition2

E .enterReorderBlock:

6 mov r12, qword ptr [rsp+72]
7 mov r13, qword ptr [rsp+16]
8 mov r12d, dword ptr [r12+r13x4+3670016] # %1 _shipdatel
19 cmp r12d, ebx # %conditionl
20 jae .continueScan

Variant 2.1

22 .leaveReorderBlock:
23 .leaveAlternativeBlock:

25 .continueScan:

Figure 6: Assembly code for Variant (B) by copying the code
fragments from Figure 5.

Since we generate dynamic-block-aware assembly, this can be
done by copying the translated code fragments to a new buffer and
patching any relative jump offsets. Figure 6 shows the machine
code for our example assembled with this approach. We cache

// We initialize dynamicBranches upfront, e.g., Variant @:
// const void* dynamicBranches = {&&nextVariant, &&nextVariant_1,
// &&leaveReorderBlock, &&enterReorderBlock}

5 loopTuples:
int32_t 1_commitdate = (data + 3932160)[localTid];
goto *dynamicBranches[0];

Alternative Block

Variant 1
enterAlternativeBlock:

10 int32_t 1_shipdate = (data + 3670016)[localTid];

1 bool predicatel = 1_shipdate < 1_commitdate;

12 int32_t 1_receiptdate = (data + 4194304)[localTid];

13 bool predicate2 = 1_commitdate < 1_receiptdate;

14 if(!(predicatel & predicate2)) goto continueScan;

15 goto leaveAlternativeBlock;

16

17 nextVariant: Variant 2
18 goto *dynamicBranches[1];

19
Reorder Block Variant 2.1
20 enterReorderBlock:

21 int32_t 1_shipdatel = (data + 3670016)[localTidl;

22 if(!(1_shipdatel < 1_commitdate)) goto continueScan;

23 goto *dynamicBranches[2];

24

5 nextVariant_1: Variant 2.2

int32_t 1_receiptdatel = (data + 4194304)[localTid];
if(!(1_commitdate < 1_receiptdatel)) goto continueScan;
goto *dynamicBranches[3];

NN NN N
B » N

30 leaveReorderBlock:
3 leaveAlternativeBlock:

continueScan:

Figure 7: Adaptive C code for the filter predicates. The
dynamicBranches array is computed in function’s preamble
for the given variant.

the generated programs to reduce L1-instruction cache misses for
repeated executions of the same variant.

We now discuss a second compilation technique that integrates
dynamic blocks into higher-level programming languages like C
or LLVM’s intermediate representation. Instead of copying the rel-
evant code fragments into a new executable, we skip fragments
or change their execution order using computed gotos. Figure 7
shows adaptive C code generated from the IR in Figure 4: As before,
we compile the program with dynamic blocks into one executable,
but this time we place a jump instruction before the dynamic block
and at the end of each variant. To change the control flow and
execute different variations, we now modify the entries in the
dynamicBranches array.

This technique is similar to NoisePage’s Permutable Compiled
Queries [29] approach. However, instead of manipulating function
pointer arrays, we use arrays of label addresses in the current
function. With LLVM’s indirectbr instruction, we can generate
similar code using LLVM as compiler backend!. We implemented
this technique in the Flying Start backend, but we observe a higher
overhead compared to the first approach that produces optimized
machine code for every variant. We also considered compiling each
variant individually; however, the compilation times increased by
more than one order of magnitude, and the quality of the generated
code did not improve substantially.

Both compilation techniques for Dynamic Blocks proposed in
this section produce highly optimized code and avoid recompila-
tions. While the first approach requires a custom compiler, the
second technique can be implemented on top of LLVM/Clang or

Uhttps://blog.llvm.org/2010/01/address- of-label-and-indirect-branches.html

[ZZ] Variant @ (explore) 2] variant (B) (explore)
[ZZ] Variant © (explore) [variant © (exploit)

OO T

—
1

/

ERRLZZ A IR

= AT T ITTTT AN T
. \PPm
N

i
[T T

36

L L
1 2 3 4 5

Time [ms]

LLVM compilation II""""]]]]]]]]]]]]]
T
6

Figure 8: Execution trace for the example query evaluating
all three implementations from Figure 1. After compilation
with LLVM is finished, Umbra switches to the faster code and
exploits it for the remaining 30 ms.

GCC. This, however, comes at the cost of a minor performance
loss due to the additional jump instructions. The following section
presents a new execution strategy for dynamic programs that can
hide this overhead almost entirely.

4 DYNAMIC EXECUTION

Dynamic Blocks efficiently generate all variants of a query with-
out recompilation. Compiling database systems can use this new
technique to try different query implementations and choose the
best-performing one. In this section, we propose a dynamic execu-
tion strategy that finds the optimal variant after a short exploration
phase and combines our Flying Start compiler for Dynamic Blocks
with LLVM.

Our dynamic execution strategy is based on Adaptive Execution
by Kohn et al. [23] for HyPer. Umbra already uses Adaptive Exe-
cution to hide the LLVM’s compilation overhead: While compiling
the query with LLVM, it processes the first morsels? using its Fly-
ing Start compiler or a virtual machine. We extend this idea for
AQP and use the first few morsels to explore every variation and
record the runtime. After evaluating each variant, we choose the
best-performing implementation and process the remaining data.
Like Adaptive Execution, the dynamic execution strategy compiles
the pipeline a second time with LLVM to optimize the machine
code even further. However, for the optimized version, we compile
the program without any Dynamic Blocks and use only the code
fragments from the best-performing implementation.

Figure 8 shows an execution trace for our running example
with the dynamic execution strategy. First, Umbra evaluates all
three implementations on five morsels and records their runtime
during a short exploration phase. We then choose the variant with
the lowest average runtime, in this case, Variant @, and execute
it on the remaining morsels. This starts the exploitation phase,
and we compile the best-performing implementation with LLVM’s
optimizations. While compiling the optimized code, we already
use Variant (C) but switch to the optimized code after finishing the

2Morsels are small chunks of work with a few thousand tuples that HyPer and Umbra
use for parallelizing query processing [25].

https://blog.llvm.org/2010/01/address-of-label-and-indirect-branches.html

LLVM compilation. Note that for recompiling the best-performing
variation with LLVM, we do not translate the query a second time to
the intermediate representation. Instead, we reuse the IR program
with dynamic blocks from the first translation pass and collect the
relevant code fragment as we do on the assembly level. LLVM then
compiles only one implementation and generates highly optimized
code without additional jump instructions.

Unlike other systems, our execution strategy performs only one
exploration phase and cannot react to changing data distributions.
Micro Adaptivity in VectorWise, for example, uses a multi-armed
bandit algorithm to find the optimal implementation and regularly
re-evaluates the variants [35, 42]. We decided against this approach
since recompiling code with LLVM is too expensive, and for most
queries, the initial exploration phase already finds the optimal
implementation. Nevertheless, the dynamic execution strategy can
be extended to change the exploited variant later on and react to
skew in the data. However, we propose to monitor the execution
times of the currently executed variant and only re-evaluate the
variants if its performance changes.

Although our Dynamic Blocks are lightweight and the dynamic
execution strategy performs only one exploration phase, there still
is an overhead. Adapting every pipeline would introduce a con-
siderable opportunity cost, i.e., evaluating every last variation will
take a long time, in which we could already exploit one of the other
options. We balance these costs with another optimization pass of
our query optimizer that adapts operators only when beneficial and
a performance boost is likely. In addition, the adapted operators
must process enough morsels to evaluate the different variations
and amortize the exploration overhead in the exploration phase.

5 APPLICATIONS

After introducing the Dynamic Blocks and how Umbra decides
which variant to execute, we now demonstrate their application by
implementing two well-known dynamic optimizations in Umbra.
Inspired by the adaptive operators in NoisePage [29], we build
dynamic operator implementations for evaluating predicates and
reordering joins during execution. Furthermore, we discuss several
design decisions and some practical problems that come with this
new abstraction.

5.1 Dynamic Predicates

Our first application for Dynamic Blocks adapts the way Umbra
evaluates filter predicates. Our initial example already demonstrated
this optimization to motivate AQP and illustrate the code generation
process. We consider join X and select o operators that evaluate con-
ditions that filter tuples. Both operators represent the boolean filter
condition as an n-ary conjunctive expression. Each conjunctive
component can itself be a complex expression, e.g., a comparison or
a nested disjunction. For our adaptive execution, we only consider
reordering the topmost conjunction and otherwise consider the
expression opaque. To optimize the conjunctive expression, Umbra
already applies several heuristics, like eliminating duplicated terms
or extracting common ones.

If an operator qualifies for dynamic execution, i.e., it processes
enough tuples, we adapt its execution. Using a reorder block, the

1 auto& cdg = getCodeGen();

2 // One condition, dynamic code not needed.

3 if (predicates.size() == 1) {

4 cdg.branchIfNot(cdg.derive(predicates[@]), skipBlock);
5 return;

6 3

7

8 // Find columns needed by multiple terms and load them.
9 auto columns = findDuplicateColumns(predicates);

10 for (auto& column : columns)

1 cdg.loadColumn(column);

12

13 if (predicates.size() <= 3) {

14 // Start an alternative block. The generated code will
15 // be placed in the first variant of the block.

16 cdg.enterAlternativeBlock();

17

18 // Evaluate the predicates without branches.

19 CodegenBool result(cdg, true);

20 for (auto& predicate : predicates)

21 result = cdg.and(result, cdg.derive(predicate));

22

23 // Branch, if the conjunction is false

24 cdg.branchIfNot(result, skipBlock);

25

26 // Switch to the second variant in the alternative.
27 cdg.nextVariant();

28 %}

29

30 // Start the reorder block.

31 cdg.enterReorderBlock();

32

33 // Jump after each term

34 for (unsigned i = 0; i < predicates.size(); i++) {

35 // Place the code in different variants.

36 if(i > @) cdg.nextVariant();

37

38 cdg.branchIfNot(cdg.derive(predicates[i]), skipBlock);
39}

40

41 // Leave the reorder block. The generated code will be
42 // placed in the surrounding dynamic block.

43 cdg.leaveReorderBlock(alternative);

44

45 // Leave the alternatve block, if one was used.

46 if (predicates.size() <= 3) cdg.leaveAlternativeBlock();
47 return;

Figure 9: C++ code for generating dynamic predicates. We
underlined all functions that generate code in Umbra’s IR.

order in which the terms are evaluated can be changed at run-
time (cf. Variant (A) and Variant (B) from Figure 1). Every term
of the top-level conjunction is placed in a different variant of the
dynamic block, and a conditional branch jumps to the skip block if
the term is false. Furthermore, for conjunctions that consist of up to
three terms, we generated a second implementation with a single
combined branch (all terms are evaluated together as in Variant @)
We empirically determined three predicates as a heuristic balancing
the execution overhead of combined execution and the performance
penalty of branch mispredictions.

Implementing this optimization with the Dynamic Blocks from
Section 3 is straightforward; there is only one pitfall. We generally
want to load columns only once and keep them in registers, but also

lazily when we first need its data to avoid loading data for filtered
tuples. For instance, consider the initial example from Figure 1,
where both comparisons need column 1_commitdate. Usually, we
load the column on the first access, i.e., in Variant @ while evaluat-
ing 1_shipdate < 1_commitdate, and then reuse the value in the
second term. However, when reordering the two predicates, we are
not certain which comparison is first, and we would need to load
the column twice. We instead load all columns accessed by more
than one term before the dynamic block. The generated code for
our initial example in Figure 4 shows this in cf. lines 3 and 4, where
we load the commit date before the dynamic blocks begin.

Loading these columns earlier is again a trade-off that can lead
to suboptimal code: If the first term skips the remaining predicates,
columns accessed only by subsequent terms are loaded unnecessar-
ily. However, the final, optimized code avoids this problem due to
our dynamic execution strategy. After choosing the best implemen-
tation, LLVM reoptimizes the code and moves the column accesses
to the predicate that first uses it.

Figure 9 shows the C++ code that generates the Dynamic Blocks
for filter predicates. We first load all columns needed by more than
one term in the conjunction (cf. line 9). If the conjunction does not
consist of more than three terms, we generate the variant with a
combined branch and place it into the first variant of the alternative
block. Note that we only create alternatives when needed: line 16
allocates a new dynamic block, and in line 27, we switch to the
second variant for the implementation with separate branches. Af-
terward, we generate the code that branches after each term: Every
variant of the reorder block evaluates one term and immediately
jumps to the skip block to process the next tuple if the statement is
false. Finally, we close the reorder block in line 43, and if a combined
implementation was generated, we leave the alternative block as
well (cf. line 46).

The Dynamic Blocks generate efficient code for evaluating the
predicates and allow adaptive query processing. During execution,
we test each variant and find the best implementation for the hard-
ware we are running on.

5.2 Dynamic Join Probes

The second optimization we implemented in Umbra dynamically
reorders join probes. Adaptive join reordering is not new and has
been used in several systems before [3, 28, 29]. We extend this
idea by combining it with predicate pullup to reorder potentially
expensive filter predicates after or between the joins [9]. Especially
in modern main-memory database systems, performing a hash
join can be faster than evaluating expensive filter predicates. For
example, in a selective join, the probed hash table can be small and
fit in the CPU’s cache while loading a string column to evaluate,
e.g., a like condition, might cause a cache miss. Ideally, the join is
also more selective than the predicate and eliminates more tuples,
reducing the number of executed instructions, branch misses, and
cache misses.

However, finding a good heuristic for this optimization is even
more complicated than ordering filter predicates. Several factors
are at play: Besides the join and predicate selectivities, the size of
the hash tables, memory access patterns, and the join condition are
decisive for the operators’ performance. In addition, the underlying

Reorder Block

Variant 3
HI
X
Variant 2
EarlyProbe
X
Variant 1
o
table scan

Figure 10: Reordering select, early probe, and hash join oper-
ators using Dynamic Blocks.

hardware characteristics, like cache miss penalties or cache sizes,
are relevant. Estimating all these factors correctly during query
optimization is difficult, and a suboptimal execution order reduces
the performance significantly. Adaptive query processing solves
this problem: We can gather precise performance statistics and
choose the optimal plan by exploring the possible implementations
at run-time.

Besides hash joins and predicates, we also reorder early probe
operators X that perform a semi-join with a bloom filter instead
of a hash table [5, 40]. Unlike early probes or selections, joins can
produce unmatched tuples or update the entries in the hashtable.
We, therefore, consider only inner or right-semi joins for reorder-
ing. Furthermore, the reordered joins must not access a column
produced by another join, i.e., all join columns must originate from
the base table.

Figure 10 shows an adapted query plan that reorders hash joins X,
early probes X, and selections o. Although the operators perform en-
tirely different operations, we can easily adapt them using Dynamic
Blocks. Every operator generates a code fragment for probing the
hash table or bloom filter or evaluating the predicates and places it
into the reorder block.

The dynamic join probes compose naturally with our dynamic
predicates for selections o and we can apply both optimizations to
the same operator. Especially in such complex scenarios, Dynamic
Blocks provide a way to express and reason about the possible
alternatives. Umbra now finds the optimal ordering dynamically
during execution, based on the actual runtime and not estimations.

6 EVALUATION

In this chapter, we present an experimental evaluation of the Dy-
namic Blocks in our research RDBMS Umbra [31]. We start with
a high-level analysis of the performance impact of AQP on four
well-known OLAP benchmarks: The TPC-H, the TPC-DS, the star
schema, and the join order benchmark (JOB) [27]. Next, we perform
an in-depth evaluation of the implemented dynamic optimizations
and discuss some of the queries from TPC-H with high performance
gains or losses.

+125 %
+100 %
N
+50 %
+25%1 A d
09 ESEED
-25 %

Speedup

TPC-H TPC-DS SSB JOB
(13 Queries) (47 Queries) (13 Queries) (90 Queries)

Figure 11: Speedup of Umbra®QP over to Umbra without AQP
for the adapted queries.

6.1 Experimental Setup

We ran all experiments on an Intel Xeon Gold 6338 CPU (Icelake,
2.0 GHz- 3.2 GHz) with 32 cores and 256 GB of memory. The ma-
chine has Ubuntu 21.10 (Kernel 5.13) installed and uses gcc 11.2
and llvm 13.0 for compilation. We measure the performance on
32 hardware threads and report the average runtime of 10 repeti-
tions. Unless stated otherwise, the experiments are conducted on
the TPC-H, TPC-DS, and SSB datasets at scale factor 10.

We consider only queries that use at least one of the dynamic
optimization. For the given configuration, about 65 % of the queries
(163 of 251) from the four benchmarks qualify, and Umbra executes
them adaptively. However, this number varies for different scale fac-
tors and execution threads, since there might not be enough morsel
available to explore the variations and exploit them afterward. We
evaluate every variant five times and choose the best-performing
implementation for exploitation based on the runtime measure-
ments. In our experiments, five repetitions per variant yielded the
best tradeoff between the length of the exploration phase and the
probability of selecting the optimal implementation.

In the experiments, we compare the static version of Umbra
(Umbra) against the adaptive version Umbra®2F with our two
dynamic optimizations and the custom compiler for the Dynamic
Blocks. When evaluating one of the optimizations individually, we
denote them as UmbraP™d (cf,, Section 5.1) and Umbral®i® (cf,,
Section 5.2).

6.2 End-To-End Benchmarks

We begin by analyzing the overall speedup that we achieve with
the two adaptive optimizations combined with Dynamic Blocks.
Figure 11 shows the result for the four benchmarks: We use the
static version of Umbra without AQP as baseline and compute the
speedup based on the total execution time, including optimizing
and compiling the queries. Overall, Umbra®QP is in all four bench-
marks faster than Umbra. Especially for the join order benchmark,
we observe significant performance improvements, as it involves
more complex join constellations and unpredictable string predi-
cates. Speedups of more than 100 % are possible and on average,
adapting the queries improves the runtime by 25 % in 90 of 114
queries.

For roughly half of the queries, we observe no or only minor
performance improvements (< 5 %) as Umbra already chooses the
optimal or a near-optimal implementation. Since AQP has a minor
overhead, Umbra®QF loses performance in 29 of the 163 queries

—— SSB

- TPC-H
- -- maximum

- minimum

TPC-DS
— geometric mean

+100 %
+75%
+50 %
+25%
0%
-25% =

Speedup

Scale Factor
Figure 12: Speedup of Umbra®QP relative to Umbra for in-
creasing scale factors. We report the minimum, maximum,
and geometric mean of all adapted queries per benchmark.

and is slower than Umbra. We identified three different causes for
the performance losses:

(1) Exploring the different variations can be expensive, and
evaluating a slow variant increases the overall runtime,

(2) The dynamic execution strategy does not always find the op-
timal implementation and chooses a variant that is slightly
slower than the default implementation, and

(3) Our modified Flying Start compiler for translating Dynamic
Blocks to machine code generates slightly different pro-
grams that can be slower (we evaluate the impact of Dy-
namic Blocks on the execution performance in more detail
in Section 6.4).

However, the losses are mostly marginal, and the runtime increases
by more than 5 % in only five queries.

In order to analyze the effects of AQP on smaller and larger
datasets as well, we repeated the experiment for different scale
factors of TPC-H, TPC-DS, and SSB. Figure 12 shows the minimum,
the maximum, and the mean speedup of Umbra®2P relative to
Umbra. The maximum speedup grows with the dataset size as we
spend more time processing adapted pipelines and exploiting the
optimal variation. At scale factor 30, the performance gains drop
again as the intermediate structures (mostly hash tables) outgrow
the CPU’s L3 cache, and query processing becomes more expensive.
Nevertheless, the overall performance improvements remain almost
constant for different scale factors as most adapted queries do not
benefit much from the optimizations.

To summarize, Adaptive Query Processing with Dynamic Blocks
achieves stable performance and the dynamic execution strategy
consistently finds a good implementation to execute. While the
maximum speedup improves for larger datasets, slowdowns do not
increase, and at scale factor 100, no query loses more than 10 %.

6.3 In-Depth Analysis

In this section, we evaluate the two dynamic optimizations from
Section 5 and analyze their impact on the runtime. We inspect
five queries from TPC-H at scale factor 100, where AQP improves
or degrades the performance significantly. Figure 13 shows the
runtime of the queries for the different versions of Umbra: While Q2
and Q19 achieve up to 2x speedup with Adaptive Query Processing,
the execution time in Q6 and Q12 improves only by 14 % and 24 %,

@A Umbra [Umbra’? [EH Umbraloin UmbraAQP
100+ 3004
"« 1 .
£ 75
= 7 200-
£ sl -
R 100
g i
& 257]
0

Q6

Q2

Figure 13: Runtime comparison of the adaptive Umbra ver-
sions for the queries with the highest speedup/slowdown
from TPC-H SF 100.

respectivily. In Q8, we even observe a slowdown of 10 % compared
to the Umbra version without AQP. However, Q8 is the only query
in TPC-H with a significant performance loss.

Q2 — This query can apply both dynamic optimizations: It adapts
the filter conditions on the part table and reorders two joins after
scanning the partsupp table. Adapting the predicates does not im-
prove the runtime since Umbra estimates the selectivities correctly,
and the second predicate is an expensive 1ike condition. Changing
the evaluation order or executing the predicates together does not
pay off, and UmbraP*¢4 evaluates the same plan.

The Dynamic Joins optimization, in contrast, improves the run-
time by roughly 100 %. Umbra’s optimizer selects a suboptimal
join order, and joining partsupp with the filtered part table first,
cuts the execution time in the pipeline in half. Umbral®® and
Umbra®QP explore the two possible join orders in the pipeline
and choose the faster one for the exploitation phase, resulting in a
significant performance gain for the query.

Q6 & Q12 — The Dynamic Predicates optimization adapts in both
queries the implementation of the filter predicates on the lineitem
table. Q6 evaluates two between statements and one comparison
on numeric/date columns; hence, executing the predicates requires
only a few instructions and is very cheap. Umbra correctly esti-
mates the selectivities and finds the optimal execution order with
a separate branch implementation. However, a combined branch
implementation, like Variant @ from the initial example, performs
better as it reduces the number of branch misses by 10x. As a result,
UmbraPed exploits the implementation without separate branches
and is 14 % faster.

In Q12, we adapt the four predicates and, therefore, generate
only dynamic code for reordering the code fragments with separate
branches. As before, Umbra’s optimizer finds the optimal order ac-
cording to the predicate selectivities. However, it does not consider
the execution costs of the individual predicates and executes an
expensive in statement on a string column second. With AQP, we
move this predicate to the end and evaluate two cheap compar-
isons on date columns before, although they are less restrictive.
Umbra®QP is 35 ms faster than Umbra, which runs the query in
185 ms.

Q8 — This query is one of the few queries where Umbra with AQP

is slower than the default Umbra version. Umbra®9P uses the

Dynamic Join optimizations in combination with predicate pull-
up to reorder a join and select operator. The reordered variant
where the join is executed before the selection is faster, and our
dynamic execution strategy decides to exploit this implementation.
However, after compiling the code with LLVM, this changes: the
implementation used by Umbra is now faster than the reordered
variant. We cannot adapt the code anymore and have to execute
the slightly slower variant, resulting in a 10 % performance loss.

The performance loss is not directly caused by our Adaptive
Query Processing technique but instead by the two-stage compi-
lation process in Umbra. The Flying Start compiler for Dynamic
Blocks and LLVM generate different programs, and the runtime
measurements from the exploration phase are not totally accurate.
However, this situation rarely occurs and the optimal implemen-
tation from the Flying Start compiler is usually also faster with
LLVM. We could solve this problem by adapting the code generated
by LLVM as well, but we decided against this as it will slow down
other queries.

Q19 — The last query achieves the highest speedup in TPC-H:
Reordering a join and select operator on the 1ineitem table doubles
the performance. The join is 45x more selective than the predicates
from selection, and executing it first is the better choice.

Adapting the select operator is also possible, but here we observe
a performance loss of 9 %. Umbra® red chooses a slower variant
and exploits it instead of the faster default implementation. In
combination with reordering the join and select operator, however,
the implementation of the filter predicates does not matter anymore,
as the join already eliminates most tuples. We, therefore, observe
the same speedup in UmbraA2P as in UmbraJ®in,

Both dynamic optimizations, adapting predicates and reordering
joins/selections, significantly improve the performance. Pulling up
select operators in the Dynamic Joins optimization achieves the
highest performance boost and improves the runtime by more than
2x in TPC-H and JOB. Reordering only joins and early probes is
not that effective and fewer queries use this optimization.

With the Dynamic Predicates optimization, high speedups are
rare since Umbra’s optimizer usually finds the optimal order accord-
ing to the predicates’ selectivities. Nevertheless, for some queries,
significant performance gains are possible when more expensive
statements are involved, e.g., string comparisons, in statements,
or like predicates. For these queries, executing a less restrictive
predicate first is sometimes faster.

6.4 Execution Overhead

The Dynamic Blocks offer a low-overhead AQP in compiling data-
base systems. In our final experiment, we inspect their impact on
the execution and evaluate their runtime overhead. For generating
native machine code with Dynamic Blocks semantics, we modi-
fied Umbra’s custom Flying Start compiler. These modifications
can lead to different block placement and register assignments (cf.
Section 3.3). In addition, we have to load some columns earlier for
reordering expressions and relational operators.

We use the following experimental setup to measure the over-
head: For every adapted query in the four benchmarks, we compare
the original runtime without adaptivity against the dynamic code.
We deactivated the exploration phase and only executed Umbra’s

Flying Start compiler

rewriting — 1w | - e v w

computed | we
gotos
0% 5% 0% +5% +10%
LLVM
. e N'—m—" LR XS + L4
| T T T T T T T T
-10% 5% 0% +5% +10%
Overhead

Figure 14: Execution overhead of the Dynamic Blocks. We
compare the dynamic code generated by Umbra®QP to the
code without Dynamic Blocks. Umbra®QF executes the de-
fault variant, i.e., it does not reorder or adapt the code but still
compiles the Dynamic Blocks. We benchmark both compila-
tion techniques for the Flying Start compiler: the approach
for assembling new variants from pre-compiled code frag-
ments (rewriting) and the implementation with computed
gotos. For LLVM, we measure the overhead of the optimal
implementation generated by Umbra®F using IR with Dy-
namic Blocks compared to the optimal variant compiled by
Umbra.

default variant to determine the runtime overhead. Figure 14 shows
the results for Umbra’s Flying Start compiler and LLVM. For the
Flying Start compiler, we consider both compilation techniques.
Rewriting is our optimized implementation that assembles machine
code for every variant. Computed gotos, in contrast, assemble the
code only once and add indirect jumps to change the control flow
during execution. This second technique can also be used with
LLVM or C(++) to generate dynamic code.

For most queries, the runtime does not change significantly and
reduces or increases by less than 2 %. In some cases, the execution
even improves since the dynamic code spills register earlier to the
stack, resulting in isolated performance improvements. However,
we also see outliers in the other direction, with more than a 5%
loss. Only the computed gotos have a higher execution overhead,
but most queries still do not lose more than 5 % performance.

The median runtime overhead is for all compilation techniques
less than 2 %, and outliers are rare in the 163 queries we considered.
We conclude that the runtime overhead is negligible, and it is more
important to find the optimal variant to exploit reliably and fast.
Dynamic Blocks allow for fast adaptive execution with Umbra’s
custom compiler, and after finding the best-performing variant,
we remove any overhead using LLVM. Our results also show that
Dynamic Blocks can be combined with high-level programming
languages using computed gotos. Execution is slightly slower, but
recompiling the optimal variant can hide the runtime overhead for
long-running queries.

7 FUTURE WORK

Our initial motivation for the Dynamic Blocks was to support
routing-based Adaptive Query Processing in compiling database
systems like Umbra or HyPer. The proposed dynamic optimiza-
tions already show a performance boost in Umbra, and we plan
to implement more optimizations to improve performance further.
Armenatzoglou et al., for instance, adaptively enable or disable
early probes [2]. Besides AQP, Dynamic Blocks can be used to effi-
ciently instrument generated code without recompilation. We can
sporadically sample the processed data by inserting optional blocks
with code fragments to collect runtime statistics into the generated
code. These fragments are enabled only for a few morsels during
execution to minimize the execution overhead.

Our dynamic execution strategy evaluates all possible implemen-
tations in the exploration phase. This approach works fine for our
two dynamic optimizations as we rarely generate more than 25 vari-
ants to explore per pipeline. However, more dynamic optimizations
also produce more implementations that need to be evaluated, and
exploring the variant will dominate the overall runtime. A more
sophisticated strategy that prunes the search space and eliminates
suboptimal implementation early on can solve this problem and
efficiently adapts pipelines with more than 100 different variants.

Dynamic Blocks could also reduce compilation times in com-
piling systems that rely on caches for the generated code. Umbra
provides an extensive infrastructure to reduce compilation times
(custom intermediate representation, tight integration with LLVM,
and a flying start compiler) [22]. Other compiling database systems,
like Amazon Redshift [2] or Starling [33], generate C++ code at the
cost of high compilation latencies. Redshift mitigates this problem
using a distributed code compilation cache. After optimizing the
query, it first checks the cache to see if the query plan was com-
piled before and tries to reuse the cached object files. However, this
approach has a major downside: A pipeline with n joins can pro-
duce up to n! different join orders. Compiling and caching all these
variations is expensive and ineffective. Dynamic Blocks combine all
possible join orders into a single executable, and every query later
chooses the execution order of the joins independently. As a result,
the number of cached executables can be reduced significantly, and
the probability of a hit in the code cache increases.

8 CONCLUSION

In this paper, we presented an efficient implementation of adaptive
query processing in compiling database systems. Our Dynamic
Block code generation framework allows developers to embed code
fragments into alternative, optional, and reorder blocks and mod-
ify the generated code later without recompilation. During query
execution, we first explore different variations of the code and
then exploit the best-performing implementation. Furthermore,
we demonstrated how to generate optimized machine code for
Dynamic Blocks and implement adaptive optimizations similar to
previous work in vectorized query engines.

We integrated two dynamic optimizations based on Dynamic
Blocks that adapt the query plan while executing it into the com-
piling database system Umbra. Dynamic predicates optimize the
execution of filter predicates in table scans, and our second opti-
mization reorders select, join, and early probe operators in pipelines.

When beneficial, AQP improves the performance by more than 2x,
while our dynamic execution strategy and custom compiler for Dy-
namic Blocks avoid slowdowns otherwise. In summary, Dynamic
Blocks provide a generic framework to adapt data-centric code and
automatically discover the optimal implementation during execu-
tion in data processing applications.

REFERENCES

(1]
(2]

[10]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

2021. NoisePage - Database Management System Project. https://noise.page/
Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, TJ Green, Monish Gupta,
Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy,
Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Polychro-
niou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram Subrama-
nian, and Doug Terry. 2022. Amazon Redshift re-invented. In SIGMOD/PODS
2022. https://www.amazon.science/publications/amazon-redshift-re-invented
Ron Avnur and Joseph M. Hellerstein. 2000. Eddies: Continuously Adaptive
Query Processing. In SIGMOD Conference. ACM, 261-272.

Shivnath Babu and Pedro Bizarro. 2005. Adaptive Query Processing in the
Looking Glass. In CIDR. www.cidrdb.org, 238-249.

Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To Partition,
or Not to Partition, That is the Join Question in a Real System. In SIGMOD
Conference. ACM, 168-180.

Pedro Bizarro, Nicolas Bruno, and David J. DeWitt. 2009. Progressive Parametric
Query Optimization. IEEE Trans. Knowl. Data Eng. 21, 4 (2009), 582-594.

Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution. In CIDR. www.cidrdb.org, 225-237.

Richard L. Cole and Goetz Graefe. 1994. Optimization of Dynamic Query Evalu-
ation Plans. In SIGMOD Conference. ACM Press, 150-160.

Andrew Crotty, Alex Galakatos, and Tim Kraska. 2020. Getting Swole: Generating
Access-Aware Code with Predicate Pullups. In ICDE. IEEE, 1273-1284.

Amol Deshpande and Joseph M. Hellerstein. 2004. Lifting the Burden of History
from Adaptive Query Processing. In VLDB. Morgan Kaufmann, 948-959.

Amol Deshpande, Joseph M. Hellerstein, and Vijayshankar Raman. 2006. Adap-
tive query processing: why, how, when, what next. In SIGMOD Conference. ACM,
806-807.

Amol Deshpande, Zachary G. Ives, and Vijayshankar Raman. 2007. Adaptive
Query Processing. Found. Trends Databases 1, 1 (2007), 1-140.

Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.
Quantifying TPC-H Choke Points and Their Optimizations. Proc. VLDB Endow.
13, 8 (2020), 1206-1220.

Markus Dreseler, Jan Kossmann, Martin Boissier, Stefan Klauck, Matthias
Uflacker, and Hasso Plattner. 2019. Hyrise Re-engineered: An Extensible Data-
base System for Research in Relational In-Memory Data Management. In EDBT.
OpenProceedings.org, 313-324.

Anshuman Dutt and Jayant R. Haritsa. 2014. Plan bouquets: query processing
without selectivity estimation. In SIGMOD Conference. ACM, 1039-1050.

Goetz Graefe and William J. McKenna. 1993. The Volcano Optimizer Generator:
Extensibility and Efficient Search. In ICDE. IEEE Computer Society, 209-218.
Goetz Graefe and Karen Ward. 1989. Dynamic Query Evaluation Plans. In
SIGMOD Conference. ACM Press, 358-366.

Joseph M. Hellerstein, Michael J. Franklin, Sirish Chandrasekaran, Amol Desh-
pande, Kris Hildrum, Samuel Madden, Vijayshankar Raman, and Mehul A. Shah.
2000. Adaptive Query Processing: Technology in Evolution. IEEE Data Eng. Bull.
23, 2 (2000), 7-18.

Axel Hertzschuch, Guido Moerkotte, Wolfgang Lehner, Norman May, Florian
Wolf, and Lars Fricke. 2021. Small Selectivities Matter: Lifting the Burden of
Empty Samples. In SIGMOD Conference. ACM, 697-709.

Navin Kabra and David J. DeWitt. 1998. Efficient Mid-Query Re-Optimization
of Sub-Optimal Query Execution Plans. In SIGMOD Conference. ACM Press,
106-117.

Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In ICDE.
IEEE Computer Society, 195-206.

Timo Kersten, Viktor Leis, and Thomas Neumann. 2021. Tidy Tuples and Flying
Start: fast compilation and fast execution of relational queries in Umbra. VLDB
7.30, 5 (2021), 883-905.

André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive Execution of
Compiled Queries. In ICDE. IEEE Computer Society, 197-208.

Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO. IEEE Computer Society,
75-88.

Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In SIGMOD Conference. ACM, 743-754.

[26

[27

(28]

[30

(31]

(32]

[33

[34

[36

(37]

(38]

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204-215.

Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz,
Alfons Kemper, and Thomas Neumann. 2018. Query optimization through the
looking glass, and what we found running the Join Order Benchmark. VLDB J.
27,5 (2018), 643-668.

Quanzhong Li, Minglong Shao, Volker Markl, Kevin S. Beyer, Latha S. Colby, and
Guy M. Lohman. 2007. Adaptively Reordering Joins during Query Execution. In
ICDE. IEEE Computer Society, 26-35.

Prashanth Menon, Amadou Ngom, Todd C. Mowry, Andrew Pavlo, and Lin Ma.
2020. Permutable Compiled Queries: Dynamically Adapting Compiled Queries
without Recompiling. Proc. VLDB Endow. 14, 2 (2020), 101-113.

Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (2011), 539-550.

Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR. www.cidrdb.org.

Thomas Neumann and César A. Galindo-Legaria. 2013. Taking the Edge off
Cardinality Estimation Errors using Incremental Execution. In BTW (LNI), Vol. P-
214. GI, 73-92.

Matthew Perron, Raul Castro Fernandez, David J. DeWitt, and Samuel Mad-
den. 2020. Starling: A Scalable Query Engine on Cloud Functions. In SIGMOD
Conference. ACM, 131-141.

Matthew Perron, Zeyuan Shang, Tim Kraska, and Michael Stonebraker. 2019.
How I Learned to Stop Worrying and Love Re-optimization. In ICDE. IEEE,
1758-1761.

Bogdan Raducanu, Peter A. Boncz, and Marcin Zukowski. 2013. Micro adaptivity
in Vectorwise. In SIGMOD Conference. ACM, 1231-1242.

Vijayshankar Raman, Amol Deshpande, and Joseph M. Hellerstein. 2003. Using
State Modules for Adaptive Query Processing. In ICDE. IEEE Computer Society,
353-364.

Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1988. Global Value
Numbers and Redundant Computations. In POPL. ACM Press, 12-27.

Viktor Rosenfeld, Max Heimel, Christoph Viebig, and Volker Markl. 2015. The Op-
erator Variant Selection Problem on Heterogeneous Hardware. In ADMS@VLDB.
1-12.

Kenneth A. Ross. 2002. Conjunctive Selection Conditions in Main Memory. In
PODS. ACM, 109-120.

Konrad Stocker, Donald Kossmann, Reinhard Braumandl, and Alfons Kemper.
2001. Integrating Semi-Join-Reducers into State of the Art Query Processors. In
ICDE. IEEE Computer Society, 575-584.

Feng Tian and David J. DeWitt. 2003. Tuple Routing Strategies for Distributed
Eddies. In VLDB. Morgan Kaufmann, 333-344.

Joanneés Vermorel and Mehryar Mohri. 2005. Multi-armed Bandit Algorithms
and Empirical Evaluation. In ECML (Lecture Notes in Computer Science), Vol. 3720.
Springer, 437-448.

Eugene Wong and Karel Youssefi. 1976. Decomposition - A Strategy for Query
Processing (Abstract). In SIGMOD Conference. ACM, 155.

https://noise.page/
https://www.amazon.science/publications/amazon-redshift-re-invented

	Abstract
	1 Introduction
	2 Related Work
	3 Dynamic Blocks
	3.1 Block Types
	3.2 Integration into Umbra's Intermediate Representation
	3.3 Compiling Dynamic Code

	4 Dynamic Execution
	5 Applications
	5.1 Dynamic Predicates
	5.2 Dynamic Join Probes

	6 Evaluation
	6.1 Experimental Setup
	6.2 End-To-End Benchmarks
	6.3 In-Depth Analysis
	6.4 Execution Overhead

	7 Future Work
	8 Conclusion
	References

