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Towards MRAM Byte-Addressable Persistent 
Memory in Edge Database Systems

Endpoints 
80% of generated data by 2025

E.g., IoT devices

Why place data at the endpoints?
• Connectivity
• Privacy
• Latency
• Energy 
• Scalability
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Memory in Edge Database Systems

Endpoints 
80% of generated data by 2025 Microcontrollers 

(MCUs)
Microprocessors

(MPUs)

FLASH
E.g., SD Card, 
embedded

Very limited resources
E.g., IoT devices

Storage medium

MRAM
Persistent Memory
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FLASH physical limitations:
• I/O operations incur extra computational overhead
• Small I/O operations are slow
• Limited endurance

• Asymmetric performance for random and sequential accesses

Problem
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Specification comparison: MRAM vs FLASH 
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MRAM Persistent Memory
• Byte–addressable
• Maximum throughput with small I/O operations
• No need for erase before write
• No wear-leveling

• Symmetric performance for sequential and random accesses

Background - MRAM 
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Where does MRAM stand out?
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Key-value stores
• LPHT
• CLHT[1]
• Control: RocksDB

Experiments

Key

Value

Raw performance Relational databases
• SQLite
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[1] T. David, R. Guerraoui, V. Trigonakis, Asynchronized concurrency: The secret to scaling concurrent search data structures



Experimental Setup

STM32 with MRAM

Raspberry Pi 3B with SD card
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Raw Performance Comparison: MRAM vs FLASH

• Overall better performance

•  Maximum throughput achieved at much 
smaller I/O operations.

• Symmetric random and sequential access 
performance.
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Data Systems: Key-value stores 

Slot 13: Occupied

…

Slot 14: Occupied

Slot 15: Empty

…

Key hash()

Hit!

LPHT

Slot 1: Occupied Slot 2: Occupied Slot 3: Empty

Bucket 3-1 (cache-line size and memory aligned)

Metadata

Slot 1: Occupied Slot 2: Occupied Slot 3: Occupied

Bucket 2-1 (cache-line size and memory aligned)

Metadata

Slot 1: Occupied Slot 2: Occupied Slot 3: Empty

Bucket 1-1 (cache-line size and memory aligned)

Bucket 1-2
…

Linked-list

Metadata

CLHT[1]

Key

hash()

1 1 0 1 1 0 0 0

1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 0
Occupation status

MRAM

MRAM(Insight: Custom memalign)

Code available at: https://github.com/luismeruje/Hashtables-STM32
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[1] T. David, R. Guerraoui, V. Trigonakis, Asynchronized concurrency: The secret to scaling concurrent search data structures



LPHT vs RocksDB

• Big advantage in scenarios 
with small key/values (most 
common scenario) 

• 134x to 3837x better for  write 
scenario with fsync

• 1.4x to 35x better for write 
scenario without fsync

• 1.64x to 6.69x better for read 
scenario (below 32 bytes) 
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CLHT vs RocksDB

• Between 11x and 1827x more put 
operations per second

• Around 9x more get operations per 
second
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Data Systems: SQLite

Source: https://www.sqlite.org/vfs.html Code available at: https://github.com/luismeruje/SQLite-STM32

MRAM Driver

LittleFS

Custom OS Interface

SQLite amalgamation

+

HAL Drivers
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Possible improvements:

• Optimized file system (remove overhead)

• Use hashing controllers, DMAs, and others to take 
load off the CPU.

• MRAM memory with better performance.

STM32 with MRAM loses on almost all 
scenarios.
Only outperforms RPi with FLASH in insert 
scenario with 2 rows/transaction.

Increased storage performance does not 
compensate lower computation capabilities.

Data Systems: SQLite
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• Big advantage in small I/O operations.
• Better endurance and performance.
• Less energy consumption.
• Less computational overhead.
• Possibly replace MPUs with MCUs.

Discussion
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• Big advantage in small I/O operations.
• Better endurance and performance.
• Less energy consumption.
• Less computational overhead.
• Possibly replace MPUs with MCUs.
• Downsides: low capacity, high cost.

• Hybrid approach could be the best solution for this moment.
• Barely grasping at the capabilities of MRAM, M3 and M4 would 

likely give much better results.

Discussion
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Code repositories: 
https://github.com/luismeruje/SQLite-STM32 (SQLite adaptation)

https://github.com/luismeruje/Hashtables-STM32 (LPHT and CLHT adaptations)
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