
Towards MRAM Byte-Addressable Persistent
Memory in Edge Database Systems

Luís Ferreira, Fábio Coelho, José Pereira
INESC TEC & University of Minho

Joint Workshops at 49th International Conference on Very Large Data Bases (VLDBW’23)
Workshop on Accelerating Analytics and Data Management Systems (ADMS’23)

August 28, 2023

1

Towards MRAM Byte-Addressable Persistent
Memory in Edge Database Systems

Endpoints
80% of generated data by 2025

E.g., IoT devices

Why place data at the endpoints?
• Connectivity
• Privacy
• Latency
• Energy
• Scalability

2

Towards MRAM Byte-Addressable Persistent
Memory in Edge Database Systems

Endpoints
80% of generated data by 2025 Microcontrollers

(MCUs)
Microprocessors

(MPUs)

Very limited resources
E.g., IoT devices

Why place data at the endpoints?
• Connectivity
• Privacy
• Latency
• Energy
• Scalability

3

Towards MRAM Byte-Addressable Persistent
Memory in Edge Database Systems

Endpoints
80% of generated data by 2025 Microcontrollers

(MCUs)
Microprocessors

(MPUs)

FLASH
E.g., SD Card,
embedded

Very limited resources
E.g., IoT devices

Storage medium

MRAM
Persistent Memory

4

Why place data at the endpoints?
• Connectivity
• Privacy
• Latency
• Energy
• Scalability

Background - FLASH

Page Page Page Page

0 … 8KBBlock

Page Page Page Page

0 … 8KBBlock

Page Page Page Page

0 … 8KBBlock

FLASH

5

Read/
Program

Erase

Background - FLASH

Page Page Page Page

0 … 8KBBlock

Page Page Page Page

0 … 8KBBlock

Page Page Page Page

0 … 8KBBlock

FLASH

6

Page Page
Data Data

Split Read/ProgramRead/
Program

Erase

Background - FLASH

Page Page Page Page

0 … 8KBBlock

Page Page Page Page

0 … 8KBBlock

Page Page Page Page

0 … 8KBBlock

FLASH

7

PagePage

PagePage

PagePage

PagePage

Wear-leveling

PagePage

PagePage

PagePage

PagePage

With Without

Erase/program cycles remaining
Many Few

Page Page
Data Data

Split Read/ProgramRead/
Program

Erase

PagePage

PagePage

PagePage

PagePage

Background - FLASH

Page Page Page Page

0 … 8KBBlock

Page Page Page Page

0 … 8KBBlock

Page Page Page Page

0 … 8KBBlock

FLASH

Wear-leveling

NAND vs NOR

8

PagePage

PagePage

PagePage

PagePage

With Without

Erase/program cycles remaining
Many Few

Page Page
Data Data

Split Read/ProgramRead/
Program

Erase

FLASH physical limitations:
• I/O operations incur extra computational overhead
• Small I/O operations are slow
• Limited endurance

• Asymmetric performance for random and sequential accesses

Problem

9

Specification comparison: MRAM vs FLASH

10

MRAM Persistent Memory
• Byte–addressable
• Maximum throughput with small I/O operations
• No need for erase before write
• No wear-leveling

• Symmetric performance for sequential and random accesses

Background - MRAM

11

Where does MRAM stand out?

12

Key-value stores
• LPHT
• CLHT[1]
• Control: RocksDB

Experiments

Key

Value

Raw performance Relational databases
• SQLite

13
[1] T. David, R. Guerraoui, V. Trigonakis, Asynchronized concurrency: The secret to scaling concurrent search data structures

Experimental Setup

STM32 with MRAM

Raspberry Pi 3B with SD card

14

Raw Performance Comparison: MRAM vs FLASH

• Overall better performance

• Maximum throughput achieved at much
smaller I/O operations.

• Symmetric random and sequential access
performance.

15

Data Systems: Key-value stores

Slot 13: Occupied

…

Slot 14: Occupied

Slot 15: Empty

…

Key hash()

Hit!

LPHT

Slot 1: Occupied Slot 2: Occupied Slot 3: Empty

Bucket 3-1 (cache-line size and memory aligned)

Metadata

Slot 1: Occupied Slot 2: Occupied Slot 3: Occupied

Bucket 2-1 (cache-line size and memory aligned)

Metadata

Slot 1: Occupied Slot 2: Occupied Slot 3: Empty

Bucket 1-1 (cache-line size and memory aligned)

Bucket 1-2
…

Linked-list

Metadata

CLHT[1]

Key

hash()

1 1 0 1 1 0 0 0

1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 0
Occupation status

MRAM

MRAM(Insight: Custom memalign)

Code available at: https://github.com/luismeruje/Hashtables-STM32

16
[1] T. David, R. Guerraoui, V. Trigonakis, Asynchronized concurrency: The secret to scaling concurrent search data structures

LPHT vs RocksDB

• Big advantage in scenarios
with small key/values (most
common scenario)

• 134x to 3837x better for write
scenario with fsync

• 1.4x to 35x better for write
scenario without fsync

• 1.64x to 6.69x better for read
scenario (below 32 bytes)

17

Put operations Get operations

CLHT vs RocksDB

• Between 11x and 1827x more put
operations per second

• Around 9x more get operations per
second

18

Data Systems: SQLite

Source: https://www.sqlite.org/vfs.html Code available at: https://github.com/luismeruje/SQLite-STM32

MRAM Driver

LittleFS

Custom OS Interface

SQLite amalgamation

+

HAL Drivers

19

Possible improvements:

• Optimized file system (remove overhead)

• Use hashing controllers, DMAs, and others to take
load off the CPU.

• MRAM memory with better performance.

STM32 with MRAM loses on almost all
scenarios.
Only outperforms RPi with FLASH in insert
scenario with 2 rows/transaction.

Increased storage performance does not
compensate lower computation capabilities.

Data Systems: SQLite

20

• Big advantage in small I/O operations.
• Better endurance and performance.
• Less energy consumption.
• Less computational overhead.
• Possibly replace MPUs with MCUs.

Discussion

21

• Big advantage in small I/O operations.
• Better endurance and performance.
• Less energy consumption.
• Less computational overhead.
• Possibly replace MPUs with MCUs.
• Downsides: low capacity, high cost.

Discussion

22

• Big advantage in small I/O operations.
• Better endurance and performance.
• Less energy consumption.
• Less computational overhead.
• Possibly replace MPUs with MCUs.
• Downsides: low capacity, high cost.

• Hybrid approach could be the best solution for this moment.
• Barely grasping at the capabilities of MRAM, M3 and M4 would

likely give much better results.

Discussion

23

Towards MRAM Byte-Addressable Persistent
Memory in Edge Database Systems

Luís Ferreira, Fábio Coelho, José Pereira
INESC TEC & University of Minho

Joint Workshops at 49th International Conference on Very Large Data Bases (VLDBW’23)
Workshop on Accelerating Analytics and Data Management Systems (ADMS’23)

August 28, 2023

Code repositories:
https://github.com/luismeruje/SQLite-STM32 (SQLite adaptation)

https://github.com/luismeruje/Hashtables-STM32 (LPHT and CLHT adaptations)

24

https://github.com/luismeruje/SQLite-STM32
https://github.com/luismeruje/Hashtables-STM32

