
1Zaid Al-Ars (z.al-ars@tudelft.nl), Accelerated Big Data Systems, Delft University of Technology

A
B
S

 g
ro

up Zaid Al-Ars
Matthijs A. Reukers, Yongding Tian, Peter Hofstee,
Matthijs Brobbel, Johan Peltenburg and Jeroen van
Stratens
Accelerated Big Data Systems group
Email: z.al-ars@tudelft.nl
Web: abs.ewi.tudelft.nl
Delft University of Technology

An Intermediate Representation for
Composable Typed Streaming Dataflow
Designs

2Zaid Al-Ars (z.al-ars@tudelft.nl), Accelerated Big Data Systems, Delft University of Technology

A
B
S

 g
ro

up
Overview
• Need for efficient big data analytics
• Challenges in accelerating big data analytics
• Addressing data conversion overhead
• Addressing HW design limitations
• Details of the Tydi specification
• Impact on reducing design complexity

3Zaid Al-Ars (z.al-ars@tudelft.nl), Accelerated Big Data Systems, Delft University of Technology

A
B
S

 g
ro

up
Efficiency challenges in big data analytics

• Data centers energy
consumption is increasing
rapidly

• By 2030, it is projected
that the ICT industry will
consume more than 20%
of world energy

• Need to increase efficiency
using optimized HW
acceleration

Nature: Nicola Jones, “How to stop data centres from gobbling up the world’s electricity”, 2018

4Zaid Al-Ars (z.al-ars@tudelft.nl), Accelerated Big Data Systems, Delft University of Technology

A
B
S

 g
ro

up
Efficiency challenges in big data analytics
3 main efficiency challenges in big data analytics

- Virtualized programming languages (e.g., JVM)

- Inefficient accelerator HW implementations

JVM

HW

!

5

A string

String size
Pointer to char buffer

Internal char array
(optionally used)

Optionally allocated
char array

JVM object header

Hash cache
UTF-16 Array reference

UTF16 array

JVM array object header

Python variable length
object header

Hash
State

Variable length
character array

FPGAPython

Le
n

g
th

St
re

am

C
h

ar
ac

te
r

st
re

am

Java 8C++

JVM

6

FPGA integration results
Regex on 1GiB of tweet-like strings.

J. Peltenburg et al., “Pushing big data into accelerators: Can the JVM
saturate our hardware?”, International Conference on High
Performance Computing, 2017

7

Apache Arrow

l Standardized representation in-memory: Common Data Layer

l Columnar format

- Hardware friendly while iterating over data (SIMD, caches, etc…)

l Libraries and APIs for various languages to build and access data

https://arrow.apache.org/

Technology Stack

Targeting
DATA

ANALYTICS
issues

Targeting
DATA
COLLECTION
issues

Our tool to build applications for
FPGA

Pre-
process

SQL
queries

Filter
Decom-

press

Parse

Alerts

Storage
attached

Network
attached

Low
latency Dataflow

compute

Machine
learning

Floating
point

Fast
parallelism

Deep
learning

SQL
queries

Visuali-
zation

GPGPU

Memor
y

FPGA

CPU

Legend

Applic-
ations

Advantag
e

Techn-
ology

J. Hoozemans et al.,
“FPGA Acceleration
for Big Data
Analytics: Challenges
and Opportunities”,
IEEE CSM, 2021

8

Data analysis:
Regex acceleration
in Dremio

SELECT SUM("value")
FROM "data-150M.parquet"
WHERE REGEXP_LIKE(
 "string",
 '.*[tT][eE][rR][aA][tT][iI][dD][eE]
 [\t\n]+[dD][iI][vV][iI][nN][gG]
 [\t\n]+([sS][uU][bB])+
 [sS][uU][rR][fF][aA][cC][eE].*'
)

l Accelerating regular expression matching with
Dremio.

l Runs on AWS EC2 FPGA-enabled instances.

l After physical planning, apply FPGA
Acceleration Planning.

l Strings in, matching indices out.

9

Regex acceleration in Dremio results

J. Peltenburg et al., “Battling the CPU bottleneck in apache parquet to arrow conversion using FPGA”, FPT, 2020
10

Designing FPGA accelerators is complex

Adrian Sampson, https://www.sigarch.org/hdl-to-adl/

HW

- Lack of data abstractions
- Low-level attributes (like assembly programming)
=> Large codebase
=> not composable
=> complex to debug
=> etc.

11

Tydi specification to facilitate streaming of
complex data
• Tydi is open specification to abstract streaming data in HW
• Automates HW design of streaming data interfaces
• Allows HW components (aka Streamlets) to be composed together
• It provides the following:

• Data types
• Data organization
• Interface requirements

Streamlet 1 Streamlet 2 Streamlet 3Tydi spec Tydi spec

12

!"#$%&'%()*+,#%'#-&".#/0123#-(#45%(#65%72827-'24(#84+#7495&%:#1-'-#6'+*7'*+%6#4;%+#<-+1=-+%#6'+%-96.#>???#@27+4.#ABAB

Tydi specification to facilitate streaming of
complex data: Data types
Tydi provides a type system for composite and variable-length data
Type system defines the following data types
1. Stream: represents physical stream carrying the following logical types
2. Bits(N): represents a data signal of N bits
3. Group: composites of multiple types (all types set at the same time)
4. Union: composites of multiple types (one type can be active at a time)
5. Null: user-defined data type

Streamlet 1 Streamlet 2Stream (of Null, Bits, Group & Union)

13

Tydi specification to facilitate streaming of
complex data: Data organization
• Tydi defines how data elements are organized in transfers
• Dimensionality property indicates if data is part of a sequence
• Translated to a “last” signal in HW
• Higher dimensionality need multiple last signals for nested sequences

and signals carrying the element-manipulating types, but
also features properties for further describing data struc-
tures. Notably, Streams have a dimensionality property,
which indicates whether the data being transferred is
part of a sequence. In hardware, this is translated to a
“last” signal; when this signal is driven high, it indicates
that the data being transferred is the last element in a
sequence, and a Stream with a higher dimensionality will
have multiple last signals, to indicate nested sequences.

In addition to dimensionality, Streams have properties
for describing how transfers should be organized in space
and time, as follows:

• Throughput is a positive, rational number indi-
cating how many elements are expected to be
transferred per individual handshake, or relative
to its parent Stream. The number of element lanes
is throughput rounded up to a natural number.

• Direction indicates whether a Stream �ows in the
same direction as its parent, or in reverse. As
an example, a Group can have both a “Forward”
and “Reverse” Stream, for indicating that interde-
pendent data is transferred between the sink and
source, such as a memory address and the data
retrieved from that address.

• Synchronicity refers to how strong the relation
between a child Stream and its parents are with
regards to dimensional information. “Sync” in-
dicates that for each element transferred on the
parent, the child has a matching transfer, while
“Desync” indicates that the child may have trans-
fers of arbitrary size. Both options also have a
“Flat” variant, which results in redundant last sig-
nals on the child being omitted.

• Complexity is a number which encodes guaran-
tees on how elements of a sequence are trans-
ferred. Overall, a lower complexity imposes more
restrictions on a source, which conversely results
in a higher complexity making it more di�cult
to implement a sink. As an example, a complex-
ity of 2 requires that elements of an inner
sequence are transferred over consecutive cycles
by a source, while higher complexities allow it
to stall independently from the sink. The speci-
�cation currently de�nes 8 levels of complexity
[27].

• A keep property can be used to ensure a logical
Stream is synthesized into physical signals, as
nested Streams may otherwise be combined into
a single physical stream.

Figure 1 illustrates how a higher complexity allows
for transfers to be organized di�erently. When transfer-
ring [[H, e, l, l, o], [W, o, r, l, d]], at complexity = 1 all
elements must be aligned to the �rst lane, last data is

asserted per transfer, and all data must be transferred
over consecutive cycles and lanes. At complexity = 8,
there are no requirements for how elements are aligned,
transfers may be postponed (asserting valid low), and last
data is asserted per lane, and may be postponed (using an
inactive lane to assert last for a previous lane or transfer).

Figure 1: Streams determine which signals are used and
valid to organize elements in transfers, and how transfers are
organized over time.

Finally, in the event these properties are insu�cient for
a use-case, Streams can also have a user signal carrying
an element-manipulating type. This user signal can be
used to provide additional information independent from
transfers or clock cycles.

4.2. Interfaces as Contracts
4.2.1. Communicating Intent

As the previous section would suggest, Tydi’s types can
convey a signi�cant amount of information; not just what
data is transferred, but also how it is transferred, and how
sequences of elements relate to one another. In e�ect, a
su�ciently detailed Stream de�nition can be treated as a
contract between components (and in a sense, designers)
on how a stream of data will be implemented.
The intermediate representation builds on this when

declaring Interfaces. In its simplest form, an Interface rep-
resents a collection of ports on a component (Streamlet),
each of which carries a logical Stream either into or out
of the component.

However, each Interface and its ports may also feature
documentation. Distinct from comments on a grammar,
documentation is an actual property of a port or interface,
and is expected to be implemented by a backend, typically
by generating matching comments on the related out-
put. Documentation being propagated from higher-level
descriptions to the actual computation-oriented design
tools that the IR complements is primarily useful when
either implementing a component based on an interface
template, or when trying to identify how physical signals
relate to their abstract de�nition.

While Tydi’s Streams assume a single clock and reset
signal, which together make up their clock and reset
domain, regardless of how many physical streams they
are composed of, the ports of an Interface do not need
to rely on the same clock and reset signals. Instead, an

and signals carrying the element-manipulating types, but
also features properties for further describing data struc-
tures. Notably, Streams have a dimensionality property,
which indicates whether the data being transferred is
part of a sequence. In hardware, this is translated to a
“last” signal; when this signal is driven high, it indicates
that the data being transferred is the last element in a
sequence, and a Stream with a higher dimensionality will
have multiple last signals, to indicate nested sequences.

In addition to dimensionality, Streams have properties
for describing how transfers should be organized in space
and time, as follows:

• Throughput is a positive, rational number indi-
cating how many elements are expected to be
transferred per individual handshake, or relative
to its parent Stream. The number of element lanes
is throughput rounded up to a natural number.

• Direction indicates whether a Stream �ows in the
same direction as its parent, or in reverse. As
an example, a Group can have both a “Forward”
and “Reverse” Stream, for indicating that interde-
pendent data is transferred between the sink and
source, such as a memory address and the data
retrieved from that address.

• Synchronicity refers to how strong the relation
between a child Stream and its parents are with
regards to dimensional information. “Sync” in-
dicates that for each element transferred on the
parent, the child has a matching transfer, while
“Desync” indicates that the child may have trans-
fers of arbitrary size. Both options also have a
“Flat” variant, which results in redundant last sig-
nals on the child being omitted.

• Complexity is a number which encodes guaran-
tees on how elements of a sequence are trans-
ferred. Overall, a lower complexity imposes more
restrictions on a source, which conversely results
in a higher complexity making it more di�cult
to implement a sink. As an example, a complex-
ity of 2 requires that elements of an inner
sequence are transferred over consecutive cycles
by a source, while higher complexities allow it
to stall independently from the sink. The speci-
�cation currently de�nes 8 levels of complexity
[27].

• A keep property can be used to ensure a logical
Stream is synthesized into physical signals, as
nested Streams may otherwise be combined into
a single physical stream.

Figure 1 illustrates how a higher complexity allows
for transfers to be organized di�erently. When transfer-
ring [[H, e, l, l, o], [W, o, r, l, d]], at complexity = 1 all
elements must be aligned to the �rst lane, last data is

asserted per transfer, and all data must be transferred
over consecutive cycles and lanes. At complexity = 8,
there are no requirements for how elements are aligned,
transfers may be postponed (asserting valid low), and last
data is asserted per lane, and may be postponed (using an
inactive lane to assert last for a previous lane or transfer).

Figure 1: Streams determine which signals are used and
valid to organize elements in transfers, and how transfers are
organized over time.

Finally, in the event these properties are insu�cient for
a use-case, Streams can also have a user signal carrying
an element-manipulating type. This user signal can be
used to provide additional information independent from
transfers or clock cycles.

4.2. Interfaces as Contracts
4.2.1. Communicating Intent

As the previous section would suggest, Tydi’s types can
convey a signi�cant amount of information; not just what
data is transferred, but also how it is transferred, and how
sequences of elements relate to one another. In e�ect, a
su�ciently detailed Stream de�nition can be treated as a
contract between components (and in a sense, designers)
on how a stream of data will be implemented.
The intermediate representation builds on this when

declaring Interfaces. In its simplest form, an Interface rep-
resents a collection of ports on a component (Streamlet),
each of which carries a logical Stream either into or out
of the component.

However, each Interface and its ports may also feature
documentation. Distinct from comments on a grammar,
documentation is an actual property of a port or interface,
and is expected to be implemented by a backend, typically
by generating matching comments on the related out-
put. Documentation being propagated from higher-level
descriptions to the actual computation-oriented design
tools that the IR complements is primarily useful when
either implementing a component based on an interface
template, or when trying to identify how physical signals
relate to their abstract de�nition.

While Tydi’s Streams assume a single clock and reset
signal, which together make up their clock and reset
domain, regardless of how many physical streams they
are composed of, the ports of an Interface do not need
to rely on the same clock and reset signals. Instead, an

and signals carrying the element-manipulating types, but
also features properties for further describing data struc-
tures. Notably, Streams have a dimensionality property,
which indicates whether the data being transferred is
part of a sequence. In hardware, this is translated to a
“last” signal; when this signal is driven high, it indicates
that the data being transferred is the last element in a
sequence, and a Stream with a higher dimensionality will
have multiple last signals, to indicate nested sequences.

In addition to dimensionality, Streams have properties
for describing how transfers should be organized in space
and time, as follows:

• Throughput is a positive, rational number indi-
cating how many elements are expected to be
transferred per individual handshake, or relative
to its parent Stream. The number of element lanes
is throughput rounded up to a natural number.

• Direction indicates whether a Stream �ows in the
same direction as its parent, or in reverse. As
an example, a Group can have both a “Forward”
and “Reverse” Stream, for indicating that interde-
pendent data is transferred between the sink and
source, such as a memory address and the data
retrieved from that address.

• Synchronicity refers to how strong the relation
between a child Stream and its parents are with
regards to dimensional information. “Sync” in-
dicates that for each element transferred on the
parent, the child has a matching transfer, while
“Desync” indicates that the child may have trans-
fers of arbitrary size. Both options also have a
“Flat” variant, which results in redundant last sig-
nals on the child being omitted.

• Complexity is a number which encodes guaran-
tees on how elements of a sequence are trans-
ferred. Overall, a lower complexity imposes more
restrictions on a source, which conversely results
in a higher complexity making it more di�cult
to implement a sink. As an example, a complex-
ity of 2 requires that elements of an inner
sequence are transferred over consecutive cycles
by a source, while higher complexities allow it
to stall independently from the sink. The speci-
�cation currently de�nes 8 levels of complexity
[27].

• A keep property can be used to ensure a logical
Stream is synthesized into physical signals, as
nested Streams may otherwise be combined into
a single physical stream.

Figure 1 illustrates how a higher complexity allows
for transfers to be organized di�erently. When transfer-
ring [[H, e, l, l, o], [W, o, r, l, d]], at complexity = 1 all
elements must be aligned to the �rst lane, last data is

asserted per transfer, and all data must be transferred
over consecutive cycles and lanes. At complexity = 8,
there are no requirements for how elements are aligned,
transfers may be postponed (asserting valid low), and last
data is asserted per lane, and may be postponed (using an
inactive lane to assert last for a previous lane or transfer).

Figure 1: Streams determine which signals are used and
valid to organize elements in transfers, and how transfers are
organized over time.

Finally, in the event these properties are insu�cient for
a use-case, Streams can also have a user signal carrying
an element-manipulating type. This user signal can be
used to provide additional information independent from
transfers or clock cycles.

4.2. Interfaces as Contracts
4.2.1. Communicating Intent

As the previous section would suggest, Tydi’s types can
convey a signi�cant amount of information; not just what
data is transferred, but also how it is transferred, and how
sequences of elements relate to one another. In e�ect, a
su�ciently detailed Stream de�nition can be treated as a
contract between components (and in a sense, designers)
on how a stream of data will be implemented.
The intermediate representation builds on this when

declaring Interfaces. In its simplest form, an Interface rep-
resents a collection of ports on a component (Streamlet),
each of which carries a logical Stream either into or out
of the component.

However, each Interface and its ports may also feature
documentation. Distinct from comments on a grammar,
documentation is an actual property of a port or interface,
and is expected to be implemented by a backend, typically
by generating matching comments on the related out-
put. Documentation being propagated from higher-level
descriptions to the actual computation-oriented design
tools that the IR complements is primarily useful when
either implementing a component based on an interface
template, or when trying to identify how physical signals
relate to their abstract de�nition.

While Tydi’s Streams assume a single clock and reset
signal, which together make up their clock and reset
domain, regardless of how many physical streams they
are composed of, the ports of an Interface do not need
to rely on the same clock and reset signals. Instead, an

14

Tydi specification to facilitate streaming of
complex data: Requirements
• Tydi defines the requirements system needs from transfers
• Streams describe how transfers should be organized in space and time
• Tydi provides the following requirements attributes

• Throughput
• Direction
• Synchronicity
• Complexity

• Complexity encodes guarantees on how elements of a sequence are transferred
• Lower logical complexity imposes more restrictions on a source making it more

difficult to implement

15

Example Tydi spec data definition

Suppose we would like to transfer “Hello World” on hardware:
• Each character is 8bit. We need two dimensions to indicate the end

of a word and the end of a sentence
• “hello world” => Stream(Bits(8), dimension=2)
• To satisfy the throughput requirement, we can specify 3 lanes to

deliver the data

16

Example Tydi spec data definition

• We can also adjust the complexity to prevent problems when data
isn't available or when sink components are busy

17

Tydi-IR toolchain implementation

• Tydi-IR system implemented using three components
1. Parser and grammar (stores results in query system)
2. Query system to store IR’s declarations & expressions (types &

components) on-demand
3. Backend which uses the query system and emits VHDL

Tydi-IR code

VHDL codeQuery
system

Parser &
grammar

VHDL
backend

18

Tydi-IR toolchain implementation

• Tydi-IR describes components and their connections.
• Example shows Tydi types “a”, ”c”, ”b”, ”d”

Accelerator
designers

Our Tydi-IR to
VHDL backend

Target hardware Tydi-IL
(Tydi Intermediate Language)

VHDL

19

Tydi-IR evaluation
• Compare with AXI4 streams, notice that “Types” only need to be

declared once
(AXI4: Advanced eXtensible
Interface Streaming Protocol,
defined by ARM Ltd)

20

M.A. Reukers et al., “An intermediate representation for composable typed streaming dataflow designs”, VLDB, 2023

Data collection: JSON parsing
l Accelerating JSON parsing for

low-latency

l SigmaX application and system

l Network-attached FPGA – low
latency

l Parsing multiple JSONs to
Arrow RecordBatch in FPGA

l Resizing and serialization to
Arrow IPC message on CPU

l Reduction of design time from
weeks to days

21
J. Peltenburg et al., “Tens of gigabytes per second JSON-to-Arrow conversion with FPGA accelerators”, FPT, 2021

Conclusions

l High performance big data analytics efficiency can be improved

- Using high-level abstractions that are aware of HW and
application

l Tydi prevents SW constructs from being lost-in-translation in HW

l Implemented Tydi-IR, a toolchain to for streaming HW components

l Results indicate improved code readability & reduced HW design
effort

22

