
GAMUT:
Matrix Multiplication-like

Tasks on GPUs
Xincheng Xie, Junyoung Kim, Kenneth Ross

Department of Computer Science, Columbia University

1

Matrix multiplication is commonly used in data science

Matrix Multiplication in Data Science

Data science task using matrix multiplication to calculate
people’s preferences for eating at different restaurants

2

P[i][k]: Weight vector of person i’s taste
R[k][j]: Style vector of restaurant j
C[i][j]: How much person i prefers to eat at restaurant j

for(i = 0; i < M; i++)
for(k = 0; k < K; k++)
for(j = 0; j < N; j++)
C[i][j] += P[i][k]*R[k][j];

Variations of Matrix Multiplication in
Data Science

Data science task using matrix multiplication to calculate
people’s preferences for eating at different restaurants, grouped by zipcode

3

P[i][k]: Weight vector of person i’s taste
R[k][j]: Style vector of restaurant j
Pzip[i]: Zipcode of person i
Rzip[j]: Zipcode restaurant j
C[i][j]: How much people at zipcode i prefers to eat at

restaurants at zipcode j

for(i = 0; i < M; i++)
for(k = 0; k < K; k++)
for(j = 0; j < N; j++)
C[Pzip[i]][Rzip[j]] += P[i][k]*R[k][j];

Variations of Matrix Multiplication in
Data Science

ML task that amplifies high signals in matrix multiplication

4

A[i][k]: Weight of observation i for feature k
B[k][j]: Stength of feature k at location j
thres[j]: Threshold at which to amplify high single products
R[i][j]: Weighted stength for each observation i at location j

for(i = 0; i < M; i++)
for(k = 0; k < K; k++)
for(j = 0; j < N; j++)
R[i][j] += A[i][k]*B[k][j] +
(A[i][k]*B[k][j]>thres[i])*(A[i][k]*B[k][j] - thres[i]);

Variations of matrix multiplication are useful in data science

However, performing such tasks is difficult as
• Libraries only support a limited class of manually tuned computations
• Deep learning compilers require significant time for optimizations

Motivation

5

Variations of matrix multiplication are useful in data science

However, performing such tasks is difficult as
• Libraries only support a limited class of manually tuned computations
• Deep learning compilers require significant time for optimizations

If such tasks were easy and fast to execute, it would lead to the discovery
of more useful tasks and ML models

We propose GAMUT, a library that automatically generates fast code for
matrix multiplication-like tasks for the GPU with low compilation
overhead.

Motivation

6

Not
programmable

Matrix Multiplication for GPUs

7

Global Memory

L2 Cache

...
Core

Regs

Core

Regs

...

Shared memory

...
Core

Regs

Core

Regs

Shared memory

GPU Architecture

Programmable

Matrix Multiplication for GPUs

8
GPU Architecture

x

Matrix Multiplication (Global memory)

MB

KB

KB

NB

M

K N

x

Matrix Multiplication (Shared memory)

Global Memory

L2 Cache

...
Core

Regs

Core

Regs

...

Shared memory

...
Core

Regs

Core

Regs

Shared memory

Matrix Multiplication for GPUs

9

MT

1

1
NT

x
Matrix Multiplication (Registers)

MB

KB

KB

NB

x

Matrix Multiplication (Shared memory)

Shared memory Shared memory

...
Core

Regs

Core

Regs

...
...

Core

Regs

Core

Regs

GPU Architecture

Global Memory

L2 Cache

Variations of matrix multiplication can be created in two ways.

1. Change the inner computation à Change loading process of MM

2. Change how results are stored à Change storing process of MM

Variations of Matrix Multiplication

10

for(i = 0; i < M; i++) for(...) for(...)
R[i][j] += A[i][k]*B[k][j] +
(A[i][k]*B[k][j]>thres[i])*(A[i][k]*B[k][j] - thres[i]);

for(i = 0; i < M; i++) for(...) for(...)
C[Pzip[i]][Rzip[j]] += P[i][k]*R[k][j];

Changing Inner Computation

11

for(i = 0; i < M; i++) for(...) for(...)
R[i][j] += A[i][k]*B[k][j] +
(A[i][k]*B[k][j]>thres[i])*(A[i][k]*B[k][j] - thres[i]);

1. Parse inner computation and generate instructions

2. Load additional data used in computation (e.g. thres[i])
à Use different loading strategy depending on how data is indexed

(e.g. thres[j], thres[i][j])

Matrix Multiplication for GPUs

12

GPU Architecture
x

Matrix Multiplication and thres[] (Global memory)

MB

KB

KB

NB

M

K N

x

Matrix Multiplication and thres[] (Shared memory)

M

PB

Matrix Multiplication for GPUs

13

GPU Architecture

MT

1

1
NT

x
Matrix Multiplication and thres[] (Registers)

MB

KB

KB

NB

x

Matrix Multiplication and thres[] (Shared memory)

PB

PB

Changing Inner Computation

14

for(i = 0; i < M; i++) for(...) for(...)
R[i][j] += A[i][k]*B[k][j] +
(A[i][k]*B[k][j]>thres[i])*(A[i][k]*B[k][j] - thres[i]);

for(i = 0; i < M; i++) for(...) for(...)
R[i][j] += A[i][k]*B[k][j] +
(A[i][k]*B[k][j]>thres[j])*(A[i][k]*B[k][j] - thres[j]);

for(i = 0; i < M; i++) for(...) for(...)
R[i][j] += A[i][k]*B[k][j] +
(A[i][k]*B[k][j]>thres[i][j])*(A[i][k]*B[k][j] - thres[i][j]);

Changing Result Storage

15

GAMUT recognizes how the results are written (e.g. using predetermined
locations, to sparse array) and generates code accordingly.

for(i = 0; i < M; i++) for(...) for(...)
C[Pzip[i]][Rzip[j]] += P[i][k]*R[k][j];

Changing Result Storage

16

for(i = 0; i < M; i++) for(...) for(...)
C[Pzip[i]][Rzip[j]] += P[i][k]*R[k][j];

GPU Architecture

MB

NB

MM Result and Pzip, Rzip (Shared Memory)

Result Location (Global memory)

M

N

NB
MB

Atomic Add

Changing Result Storage

17

for(i = 0; i < M; i++) for(...) for(...)
C[Pzip[i]][Rzip[j]] += P[i][k]*R[k][j];

for(i = 0; i < M; i++) for(j = 0; j < N; j++)
accum = 0;
for(k = 0; k < K; k++)
accum += P[i][k]*R[k][j];

accum > thres ? C_sparse.add(accum)

for(i = 0; i < M; i++) for(j = 0; j < N; j++)
accum = 0;
for(k = 0; k < K; k++)
accum += P[i][k]*R[k][j];

min_heap_100.add(accum)

Upon installation, GAMUT finds the optimal block sizes (Mb, Nb, Kb, Mt, ...)
for matrix multiplication (done once).

When a new query is encountered, GAMUT incrementally scales the tile
sizes up or down to fit the memory of the streaming processors.

The hash of the parse tree of the query, along with the block sizes, is saved
so that the same query can be executed immediately in the future.

Parameter finding

18

Baselines

19

cuBLAS, CUTLASS : Commonly used matrix multiplication libraries for
the GPU

- Fast performance for matrix multiplication
- Unable to support matrix multiplication-like tasks in general

Apache TVM : Popular deep learning compiler, able to optimize DL
workloads for a variety of hardware.

- Able to support tasks with different inner computations
- Unable to support tasks that change result storage without generating

intermediate results

Experiment Results (Compilation)

20

for(i = 0; i < M; i++) for(...) for(...)
C[i][j] += P[i][k]*R[k][j];

Standard Matrix Multiplication

Method GAMUT cuBLAS CUTLASS TVM
Compile Time 3.3s 1.7s 4.9s 2m 21s

Compilation time for matrix multiplication

Matrix order 1k 32k
TVM Compile

Time
2m 21s 51m 33s

TVM Compilation time for matrix multiplication

Experiment Results (Compilation)

21

for(i = 0; i < M; i++) for(...) for(...)
R[i][j] += A[i][k]*B[k][j] +
(A[i][k]*B[k][j]>thres[i])*(A[i][k]*B[k][j] - thres[i]);

Matrix multiplication-like task

Method GAMUT cuBLAS CUTLASS TVM
Compile Time 3.6s N/A N/A 2m 29s

Compilation time for matrix multiplication-like task

Matrix order 1k 32k
TVM Compile

Time
2m 29s 51m 17s

TVM Compilation time for matrix multiplication-like task

Experiment Results (Execution Time)

22

cuBLAS CUTLASS GAMUT

Exec.
time

1

2

Matrix order : 16k
Unit : Seconds
(lower is better)

TVM cuBLAS CUTLASS GAMUT

Exec.
time

4

8

TVM

N/A N/A

Standard Matrix Multiplication Matrix Multiplication-like Task

Experiment Results Summary

23

Performance Compilation Time Flexibility
Libraries

(cuBLAS, CUTLASS)
Most

performant
Low Inflexible

DL compilers (TVM) Less performant High Less flexible

GAMUT Performant Low Flexible

Conclusion

24

GAMUT is a library that can optimize matrix multiplication-
like tasks for the GPU. GAMUT has similar performance to
state-of-the-art matrix multiplication libraries, while having
faster compilation time, better performance, and more
flexibility than deep learning compilers.

We expect GAMUT will improve productivity for common
data analysis tasks and facilitate research in the ML
community by allowing scientists to write simple code that is
also very efficient.

https://github.com/xxcisxxc/GAMUT-release

