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CPU Evolution: The Day of Reckoning
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CPU Evolution: The Day of Reckoning

Fusion and mix of CPU components: bottleneck shift and novel tradeoffs

Miniaturization Generalization

Multi-Core Many-Core

Chiplets
[Dennard Scaling]

[Moore’s Law]

Reduced IO overheads
Low-effort benefits

Integrated components (GPU)
Parallelization + vectorization

2008 2015

Section VIII: Day of Reckoning

G. Moore: Cramming Components Onto Integrated Circuits (1965)

Specialization [Intel, AMD, IBM, Apple, …]

Heterogeneous + specialized unit interactions



Large System Out of Small Functions

Monolithic CPU



Large System Out of Small Functions

Interconnected Chiplets: Increased On-Socket NUMA Granularity

Cores Cores

Cores Cores

Intel
Embedded Multi-die Interconnect Bridge

AMD
Infinity Fabric

Open Chiplet Ecosystem
Universal Chiplet Interconnect Express (UCIe)

Chiplet/Tile



A Fusion of Components for Modern Workloads

Complex interplay of novel memory + computation non-uniformity

Cores

HBM

Tile/Chiplet

2. Native Half-Precision Types
Optimized Computation and Vectorization

3. Specialized Hardware Accelerators
Offload CPU Cores With Specialized Units

~230GB/s

DDR5 
~60GB/s

On-Socket NUMA Region

1. High-Bandwidth Memory
Bandwidth-Bound Workloads

On-Socket NUMA Region



The Big Picture: Intel Sapphire Rapids
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The Big Picture: Intel Sapphire Rapids

Evolution: from monolithic CPU resources to fine-grained control

Cores Cores

Cores CoresDDR5
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HBM HBM

HBM HBM

~60GB/s

~230GB/s

Intel Xeon 9480 MAX
4 Chiplets/Tiles Configuration 

Per Tile
14 cores (28HT), 16GB HBM2e, 64GB DDR5

Total
56 cores (112HT), 64GB HBM2e, 256GB DDR5

NUMA
8 regions per socket: 4 HBM + 4 CPU/DRAM
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The focus of our study
Tile-Local Characteristics



Interaction of Individual Functionalities

Evaluate the interplay of granular memory and computational decisions

DDR5 

HBM

~60GB/s
Tile

Cores

NUMA 0

NUMA 8The main focus of our study
Tile-Local Characteristics

~230GB/s

2. Native Half-Precision Types
Optimized Computation + Vectorization

3. Specialized Hardware Accelerators
Offload CPU Cores By Specialized Units

1. High-Bandwidth Memory
Bandwidth-Bound Workloads



HBM vs. DRAM: Extending the Memory Hierarchy

2-3.7x bandwidth increase on socket for shifting the DRAM bottleneck

NUMA GB/s
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HBM vs. DRAM + Interconnects: Latency Slowdown

Up to 30% higher latency over DRAM for EMIB, negligible for UPI

NUMA %
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HBM Latency Slowdown over DRAM
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The Impact of HBM: Data Access Patterns

Evaluate extra bandwidth and higher latency on generalized patterns

Workload: 1B FP32 elements + Tile-local processing (up to 28 threads) 

Access patterns
SCAN: full sequential scan (bandwidth)

RANDM: random access (latency)

SEQM: sequential scan with indirection (mix)



Data Access Pattern: Bottleneck Shift

HBM provides additional resources with similar scalability characteristics 
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Higher HBM Latency + Random Access Improvement 

HBM scales with additional resources consuming/starving for data
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Scaling The Bandwidth Wall

Breaking the DRAM bandwidth wall with the benefit of data + core locality
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SUM: summing up 1B elements, up to 28 threads on a single tile, DRAM/HBM local data.



Native Half-Precision Types: ML-Driven Opportunity

2. Native Half-Precision Types
Optimized Computation + Vectorization

3. Specialized Hardware Accelerators
Offload CPU Cores By Specialized Units + Accelerate

1. High-Bandwidth Memory
Bandwidth-Bound Workloads and Access Patterns

Hardware-supported types enable fine-grained memory + compute tuning 



Reducing Transfer Size and Computation Footprint

Double precision: FP64

Single precision: FP32

Half precision: FP16, BF16

Flexible data types tailored to the workload
Trade off range + precision for performance 

Hardware Instructions + Vectorization
Intrinsics and compiler support

HBM + Types: benefit depends on the shifted memory + compute bottleneck

64 bits
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Workload: 1B elements SUM-IF, varying the data type and placement in HBM/DRAM

0

10

20

30

40

50

60

70

1 2 4 7 14 28
T

hr
ou

gh
pu

t 
[G

T
ps

]
Threads

FP16-HBM FP32-HBM FP64-HBM

FP16-DRAM FP32-DRAM FP64-DRAM

1.35x

1.72x2.07x

2x

2x



On-The-Fly Intermediate Type Conversion

HBM alleviates the data movement bottleneck for efficient computation 

BF16: only intermediate data type for computation
Requires on-the-fly conversion
Optimized computation and intrinsics

Workload: 1B elements, pair-wise multiply-add, FP32->BF16 and FP16 only, DRAM + HBM

sign

sign exponent (5b)

exponent (8b) fraction (7b)

fraction (10b)

BF16

FP16

Trade precision for range – ML-driven: no silver bullet!
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Accelerators: Advanced Matrix Extensions (AMX)

Mix-and-match: specialized core-local resources added to design space 

16 rows

64 bytes = 32 x BF16, 64 x INT8 

1KByte Tile Register

X =

Tile Matrix Multiply (TMUL): Dot Product

ML: Matrix Operations, Convolution, … x 8 Register Files + TMUL

2. Native Half-Precision Types
Optimized Computation + Vectorization
3. Specialized Hardware Accelerators
Offload CPU Cores By Specialized Units + Accelerate Workloads

1. High-Bandwidth Memory
Bandwidth-Bound Workloads and Access Patterns



Use Case: Accelerating Vector Computations

Offload computation from cores: complex decisions inside single socket
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Growing CPU Compute and Storage Heterogeneity

Goal: transparent system adaptation to the novel HW interactions

1. High-Bandwidth Memory 2. Half-Precision Types 3. Specialized Accelerators

Larger Design Space: Interactions + Tradeoffs 
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Expected Moore’s Law: Large System of Small Functions

Build adaptive and hardware-conscious systems for inevitable complexity 

From Monolithic to Complex Heterogeneous CPUs
On-the-fly system adaptation for any hardware

Complex Memory and Compute Interactions
Automating workload benchmarking and tuning
[Chaosity@TPC-TC’23]

Tailored and Optimized Data Structures and Algorithms
Using novel hardware fusion with principled design

viktor-sanca
viktor.sanca@epfl.ch
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