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CPU Evolution: The Day of Reckoning

[Dennard Scaling]

Multi-Core Many-Core

Generalization

Miniaturization

Low-effort benefits Parallelization + vectorization
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Heterogeneous + specialized unit interactions



CPU Evolution: The Day of Reckoning

[Moore’s Law] Chiplets

G. Moore: Cramming Components Onto Integrated Circuits (1965) NUMA 0 NUMA 1
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It may prove to be more economical to build large
systems out of smaller functions, which are separately pack-
aged and interconnected.
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construct a considerable variety of equipment both rapidly = NUMA2 NUMA 3

and economically.

ialization [Intel, AMD, IBM, Apple, ..
Section VIll: Day of Reckoning Specialization | pple, ...]

Heterogeneous + specialized unit interactions

Fusion and mix of CPU components: bottleneck shift and novel tradeoffs



Large System Out of Small Functions

Monolithic CPU
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Large System Out of Small Functions

Chiplet/Tile

Cores

Intel
Embedded Multi-die Interconnect Bridge

AMD
Infinity Fabric

Open Chiplet Ecosystem
Universal Chiplet Interconnect Express (UCle)

Interconnected Chiplets: Increased On-Socket NUMA Granularity
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A Fusion of Components for Modern Workloads
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| On-Socket NUMA Region
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1. High-Bandwidth Memory |

Bandwidth-Bound Workloads :

2. Native Half-Precision Types
Optimized Computation and Vectorization

3. Specialized Hardware Accelerators
Offload CPU Cores With Specialized Units

Complex interplay of novel memory + computation non-uniformity



The Big Picture: Intel Sapphire Rapids

Intel Xeon 9480 MAX
4 Chiplets/Tiles Configuration

Per Tile
14 cores (28HT), 16GB HBM?2e, 64GB DDR5

Total
56 cores (112HT), 64GB HBM?2e, 256GB DDR5




The Big Picture: Intel Sapphire Rapids

-
The focus of our study ~ NUMA8|NUMA9
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Intel Xeon 9480 MAX Tile-Local Characteristics:
4 Chiplets/Tiles Configuration

Per Tile
14 cores (28HT), 16GB HBM?2e, 64GB DDR5

—————————————————————————————————————————————————

Total — —— —— SEFREAFRRRRTEEITERIaES e
56 cores (112HT), 64GB HBM2e, 256GB DDR5
NUMA

8 regions per socket: 4 HBM + 4 CPU/DRAM

NUMA 10 NUMA 11

Evolution: from monolithic CPU resources to fine-grained control



Interaction of Individual Functionalities

The main focus of our study :____N_l!_'\_/'_é_&__: 1. High-Bandwidth Memory

Tile-Local Characteristics Bandwidth-Bound Workloads

Evaluate the interplay of granular memory and computational decisions
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HBM vs. DRAM: Extending the Memory Hierarchy

Intel Memory Latency Checker (MLC v3.10) Bandwidth Matrix

HBM Bandwidth Increase over DRAM

NUMA  GB/s NUMA %
0 220.92 0 367.95
1 144.27 1 238.55

2 126.16 2 209.06

3 122.46 3 203.05

2-3.7x bandwidth increase on socket for shifting the DRAM bottleneck
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HBM vs. DRAM + Interconnects: Latency Slowdown

Intel Memory Latency Checker (MLC v3.10) Latency Matrix

HBM Latency Slowdown over DRAM
NUMA ns NUMA %

:

1

2 133.3

3 EMIB/Tile Mesh

4 UPI/Remote

5

6

7/

Up to 30% higher latency over DRAM for EMIB, negligible for UPI



The Impact of HBM: Data Access Patterns

Workload: 1B FP32 elements + Tile-local processing (up to 28 threads)

Access patterns R
SCAN: full sequential scan (bandwidth) "

RANDM: random access (latency) \ﬂ
SEQM: sequential scan with indirection (mix) L,

Evaluate extra bandwidth and higher latency on generalized patterns



Data Access Pattern: Bottleneck Shift

SCAN: sequential scan, RANDM: random access, SEQM: sequential scan with indirection; 1B elements, 28 threads
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HBM provides additional resources with similar scalability characteristics



Higher HBM Latency + Random Access Improvement

—— RANDM-DRAM-FP32 --= RANDM-HBM-FP32

. Expected Slowdown EHyperthreads

Threads

HBM scales with additional resources consuming/starving for data



Scaling The Bandwidth Wall

SUM: summing up 1B elements, up to 28 threads on a single tile, DRAM/HBM local data.

200 — DRAM-SUM —HBM-SUM

60GB/s — Tile DRAM

Bandwidth [GB/s|
3

(@)
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Threads

Breaking the DRAM bandwidth wall with the benefit of data + core locality
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Native Half-Precision Types: ML-Driven Opportunity

T“emcalpmcessmg ............ o 1. High-Bandwidth Memory
i ' i Bandwidth-Bound Workloads and Access Patterns

5 2. Native Half-Precision Types
NUMA O “23OGB/s| Optimized Computation + Vectorization
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Hardware-supported types enable fine-grained memory + compute tuning



Reducing Transfer Size and Computation Footprint

Workload: 1B elements SUM-IF, varying the data type and placement in HBM/DRAM

Double precision: FP64

64 bits

Single precision: FP32

32 bits

Half precision: FP16, BF16

16 bits

Flexible data types tailored to the workload
Trade off range + precision for performance

Hardware Instructions + Vectorization
Intrinsics and compiler support
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Threads

HBM + Types: benefit depends on the shifted memory + compute bottleneck



On-The-Fly Intermediate Type Conversion

Workload: 1B elements, pair-wise multiply-add, FP32->BF16 and FP16 only, DRAM + HBM

Trade precision for range — ML-driven: no silver bullet!

sign exponent (8b) fraction (7b)

sris | [HINEEEEENEEEEEEE

sign  exponent (5b) fraction (10b)

rrie | HEEENEEEEEEEEES

BF16: only intermediate data type for computation
Requires on-the-fly conversion
Optimized computation and intrinsics

— RAM-CONV
—— HBM-CONV

- . -RAM-FP-16
- . -HBM-FP-16

DRAM Bandwidth-Bound

FP32 HBM faster vs. FP16 DRAM
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Threads

HBM alleviates the data movement bottleneck for efficient computation



3. Specialized Hardware Accelerators
Offload CPU Cores By Specialized Units + Accelerate Workloads

Tile Matrix Multiply (TMUL): Dot Product 64 bytes = 32 x BF16, 64 x INT8

16 rows

EEE B

ML: Matrix Operations, Convolution, ... x 8 Register Files + TMUL

1KByte Tile Register

Mix-and-match: specialized core-local resources added to design space



Use Case: Accelerating Vector Computations

Workload: 1M tuples x 512-D vector, computing dot products against 512-D vector (on-the-fly BF16 conversion for AMX)

HBM-Local Data DRAM-Remote Tile Data
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Offload computation from cores: complex decisions inside single socket



Growing CPU Compute and Storage Heterogeneity

Workload: 1M tuples x 512-D vector, computing dot products against 512-D vector (on-the-fly BF16 conversion for AMX)

1. High-Bandwidth Memory «—— 2. Half-Precision Types «—— 3. Specialized Accelerators

Werl)esign Space: Interactions + W
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Goal: transparent system adaptation to the novel HW interactions



From Monolithic to Complex Heterogeneous CPUs
On-the-fly system adaptation for any hardware

Complex Memory and Compute Interactions

Automating workload benchmarking and tuning
[Chaosity@TPC-TC’23]
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j e |2 Tailored and Optimized Data Structures and Algorithms
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| pcte | ' Using novel hardware fusion with principled design
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Build adaptive and hardware-conscious systems for inevitable complexity
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