Post-Moore's Law Fusion

High-Bandwidth Memory, Accelerators, and Native Half-Precision Processing for CPU-Local Analytics

Viktor Sanca, Anastasia Ailamaki

ADMS 2023

in viktor-sanca viktor.sanca@epfl.ch

Chiplets

CPU Evolution: The Day of Reckoning

Specialization [Intel, AMD, IBM, Apple, ...]

[Moore's Law]

Heterogeneous + specialized unit interactions

CPU Evolution: The Day of Reckoning

G. Moore: Cramming Components Onto Integrated Circuits (1965)

It may prove to be more economical to build large systems out of smaller functions, which are separately packaged and interconnected. The availability of large functions, combined with functional design and construction, should allow the manufacturer of large systems to design and construct a considerable variety of equipment both rapidly and economically.

Section VIII: Day of Reckoning

[Moore's Law] Chiplets

Specialization [Intel, AMD, IBM, Apple, ...]

Heterogeneous + specialized unit interactions

Fusion and mix of CPU components: bottleneck shift and novel tradeoffs

Large System Out of Small Functions

Large System Out of Small Functions

Intel Embedded Multi-die Interconnect Bridge

Open Chiplet Ecosystem Universal Chiplet Interconnect Express (UCIe)

Interconnected Chiplets: Increased On-Socket NUMA Granularity

A Fusion of Components for Modern Workloads

Complex interplay of novel memory + computation non-uniformity

The Big Picture: Intel Sapphire Rapids

Intel Xeon 9480 MAX 4 Chiplets/Tiles Configuration

Per Tile 14 cores (28HT), 16GB HBM2e, 64GB DDR5

Total

56 cores (112HT), 64GB HBM2e, 256GB DDR5

The Big Picture: Intel Sapphire Rapids

Intel Xeon 9480 MAX 4 Chiplets/Tiles Configuration

Per Tile 14 cores (28HT), 16GB HBM2e, 64GB DDR5

Total

56 cores (112HT), 64GB HBM2e, 256GB DDR5

NUMA

8 regions per socket: 4 HBM + 4 CPU/DRAM

Evolution: from monolithic CPU resources to fine-grained control

Interaction of Individual Functionalities

1. High-Bandwidth Memory Bandwidth-Bound Workloads

2. Native Half-Precision Types Optimized Computation + Vectorization

3. Specialized Hardware Accelerators Offload CPU Cores By Specialized Units

Evaluate the interplay of granular memory and computational decisions

HBM vs. DRAM: Extending the Memory Hierarchy

Intel Memory Latency Checker (MLC v3.10) Bandwidth Matrix

2-3.7x bandwidth increase on socket for shifting the DRAM bottleneck

HBM vs. DRAM + Interconnects: Latency Slowdown

Intel Memory Latency Checker (MLC v3.10) Latency Matrix

Up to 30% higher latency over DRAM for EMIB, negligible for UPI

The Impact of HBM: Data Access Patterns

Workload: 1B FP32 elements + Tile-local processing (up to 28 threads)

Access patterns SCAN: full sequential scan (bandwidth)

RANDM: random access (latency)

SEQM: sequential scan with indirection (mix)

Evaluate extra bandwidth and higher latency on generalized patterns

Data Access Pattern: Bottleneck Shift

SCAN: sequential scan, RANDM: random access, SEQM: sequential scan with indirection; 1B elements, 28 threads

HBM provides additional resources with similar scalability characteristics

Higher HBM Latency + Random Access Improvement

HBM scales with additional resources consuming/starving for data

Scaling The Bandwidth Wall

SUM: summing up 1B elements, up to 28 threads on a single tile, DRAM/HBM local data.

Breaking the DRAM bandwidth wall with the benefit of data + core locality

Native Half-Precision Types: ML-Driven Opportunity

1. High-Bandwidth Memory Bandwidth-Bound Workloads and Access Patterns

2. Native Half-Precision Types Optimized Computation + Vectorization

3. Specialized Hardware Accelerators Offload CPU Cores By Specialized Units + Accelerate

Hardware-supported types enable fine-grained memory + compute tuning

Reducing Transfer Size and Computation Footprint

Workload: 1B elements SUM-IF, varying the data type and placement in HBM/DRAM

HBM + Types: benefit depends on the shifted memory + compute bottleneck

<u> </u>AiAS

On-The-Fly Intermediate Type Conversion

Workload: 1B elements, pair-wise multiply-add, FP32->BF16 and FP16 only, DRAM + HBM

HBM alleviates the data movement bottleneck for efficient computation

EPFL

Accelerators: Advanced Matrix Extensions (AMX)

1. High-Bandwidth Memory

Bandwidth-Bound Workloads and Access Patterns

2. Native Half-Precision Types Optimized Computation + Vectorization

3. Specialized Hardware Accelerators Offload CPU Cores By Specialized Units + Accelerate Workloads

Tile Matrix Multiply (TMUL): Dot Product

x 8 Register Files + TMUL

Mix-and-match: specialized core-local resources added to design space

Use Case: Accelerating Vector Computations

Workload: 1M tuples x 512-D vector, computing dot products against 512-D vector (on-the-fly BF16 conversion for AMX)

Offload computation from cores: complex decisions inside single socket

Growing CPU Compute and Storage Heterogeneity

Workload: 1M tuples x 512-D vector, computing dot products against 512-D vector (on-the-fly BF16 conversion for AMX)

Expected Moore's Law: Large System of Small Functions

From Monolithic to Complex Heterogeneous CPUs On-the-fly system adaptation for any hardware

Complex Memory and Compute Interactions Automating workload benchmarking and tuning [Chaosity@TPC-TC'23]

Tailored and Optimized Data Structures and Algorithms Using novel hardware fusion with principled design

in viktor-sanca viktor.sanca@epfl.ch

Build adaptive and hardware-conscious systems for inevitable complexity