Musings on Main-Memory Systems (with a DBMS bent)

Guy Lohman
Manager, Disruptive Information Management Architectures
IBM Almaden Research Center
Caveat

• I am not a hardware guy.
• So take these musings with a giant grain of salt.
My Exposure: Blink

• Started in 2007
• Aimed at Business Intelligence queries
• Exploits:
 – Large aggregate main memories
 – Large-scale, shared-nothing parallelism
 • Multi-node
 • Multi-core
 • SIMD (vector operation)
 – SQL operations on dictionary-encoded data
 – Cache-conscious algorithms
• Two accelerator products:
 – z/OS (mainframe) appliance (GA’d Nov. 2010)
 – Informix virtual appliance (GA’d March 2011)
Programming Paradigm Changes

• I thought the trend was toward “programmer oblivion” (Exhibit A: Java)!
• L1 cache is crucial – not getting any bigger!
 ➔ Cache line aware
 ➔ Process groups of rows (“strides”)
• More NUMA aware (core affinity)
• More compiler aware – make sure it…
 • Unrolls loops
 • Exploits vector instructions
• Retrofitting legacy software isn’t likely to be multi-core friendly (efficient)
What’s Coming

• **Lots** more cores
• Probably not commensurate memory bandwidth
• More vectorization (RISC \rightarrow CISC)
• Exploitation of GPUs
• Faster PCI Express
• SSDs \rightarrow Phase Change Memory (PCM)
 – Architectural issues:
 • Additional level in the memory hierarchy? OR
 • Alternative to disk for hot data?
 – DBMS issues:
 • How recover from inconsistent states that PCM preserves?
 • How change data structures and access patterns?
Some Consequences

• (Systems) code will be less portable, not more so!
• Energy consumption and heat are major limitations ➔ ARM and Atom processors
• OLTP & BI converging to Operational Data Store
• Can afford to dedicate some cores to…
 – Monitoring
 – Housekeeping
 – Optimizing
• “Disk is the tape of today.”
 – Mike Stonebraker
 ➔ Memory is the disk of today
 ➔ Cache is the memory of today