
Efficient Locking Techniques for Databases on Modern
Hardware

Hideaki Kimura
∗

Brown University

hkimura@cs.brown.edu

Goetz Graefe
Hewlett-Packard Laboratories

goetz.graefe@hp.com

Harumi Kuno
Hewlett-Packard Laboratories

harumi.kuno@hp.com

ABSTRACT
Traditional database systems are driven by the assumption that disk
I/O is the primary bottleneck, overshadowing all other costs. How-
ever, future database systems will be dominated by many-core pro-
cessors, large main memory, and low-latency semiconductor mass
storage. In the increasingly common case that the working data
set fits in memory or low-latency storage, new bottlenecks emerge:
locking, latching, logging, and critical sections in the buffer man-
ager. Prior work has addressed two of these – latching and log-
ging. This paper addresses locking and proposes new mechanisms
optimized for modern hardware. We devised new algorithms and
methods to improve all components of database locking, including
key range locking, intent locks, detection and recovery from dead-
locks, and early lock release. Most of the techniques are easily
applicable to other database systems. Experiments with Shore-MT,
the transaction processing engine we used as the implementation
basis, show throughput improvement by factors of 5 to 50.

1. INTRODUCTION
We are developing a new transactional storage manager specif-

ically optimized for modern hardware. Traditional databases are
optimized to balance CPU operations against the bottleneck of disk
I/O. However, databases on modern hardware face a future domi-
nated by many-core processors, large main memory, and low-latency
semiconductor mass storage, and thus face different bottlenecks.
As illustrated in Figure 1 with data from [8], when all data in a
database fits into main memory, about 80% of the CPU cycles are
accounted for by B-tree lookup and latching, logging, locking, and
buffer management. Furthermore, the numbers on the figure reflect
single-threaded execution. The rapidly increasing number of CPU
cores on modern hardware causes physical and logical contention
in each of these modules, making bottlenecks even more severe.

The right-hand side of Figure 1 sketches our goal – to reduce
each of these four costs by an order of magnitude. In our prior
work [6], which uses Shore-MT [10] as an implementation base,
we developed a novel B-tree variant that addresses the latching bot-
tleneck, Foster B-trees. Foster B-trees achieved a 3× to 6× higher
throughput than Shore-MT for a highly concurrent workload, re-

∗This work was done while the author was at HP Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
The Third International Workshop on Accelerating Data Management Sys-
tems using Modern Processor and Storage Architectures (ADMS’12).
Copyright 2012.

B-tree lookup8.1%

Latching10.2%

Logging21%

Locking
18.7%

Buffer pool29.6%

Other12.3%

10x Speed-up
Bottlenecks on

Modern Hardware

10x Speed-up
Bottlenecks on

Modern Hardware

Project Goal

(This paper)

Work in
progress()

Figure 1: OLTP overhead breakdown [8] and our goal.

ducing the cost of latching from a dominant bottleneck to a neg-
ligible overhead (for more details, we refer readers to [6]). We
also leverage the logging optimizations devised by the Shore-MT
team [11]. In particular, their “flush-pipeline” and “consolidation
array” eliminate the bottlenecks of log flush and contention in the
log manager, largely reducing the overhead of logging.

In this paper, we focus on the locking bottleneck. We address all
aspects of locking in databases with four techniques presented in
Sections 2 through 5: (1) efficient key range locking, (2) lightweight
intent locks, (3) a deadlock detection and recovery scheme that
enhances an existing adaptation of the Dreadlocks technique [12]
to databases, and (4) an improvement on early lock release algo-
rithm [11] to ensure correct treatment of read-only transactions, re-
spectively. Each section discusses prior work relevant to the tech-
nique described in that section. Two of these techniques (intent
locks and deadlock detection) focus on shortening code paths, while
the other two (key range locking and early lock release) focus on
increasing concurrency. In a different dimension, two of the tech-
niques (deadlock detection and early lock release) focus on quickly
identifying and resolving instances of contention, whereas the other
two (intent locks and key range locking) take a more global per-
spective, reducing the potential for contention in the first place.

Section 6 gives an empirical evaluation, demonstrating that our
storage manager performs up to 50× faster than the base Shore-
MT. Finally, Section 7 presents our summary, conclusions, and our
ongoing work for further speeding up databases on modern hard-
ware.

2. KEY RANGE LOCKING
Locking is a common mechanism to separate concurrent trans-

actions. Most locking schemes distinguish share (S) mode from
exclusive (X) mode (N is no-lock). As shown in Table 1, S-locks
are compatible with each other while X-locks are exclusive.

Table 1: Basic Locks.

N S X
N X X X
S X X ×
X X × ×

Serializable transaction isolation protects not only existing records
and key values but also non-existing ones. For example, after a
query such as ”Select count(*) From T Where T.a = 15” has re-
turned a count of 0, the same query within the same transaction
must return the same count. In other words, the absence of key
value 15 must be locked for the duration of the transaction. Key
range locking achieves this with a lock on a neighboring existing
key value in a mode that protects not only the existing record but
also the gap between two key values.

For our implementation, we extended previous descriptions of
the locking protocol with specific locking instructions for cursors,
in particular the end points of inclusive and exclusive, ascending
and descending cursors.

2.1 Prior Techniques

ARIES/KVL and ARIES/IM: Mohan et al. developed ARIES/
KVL [14], a locking protocol to ensure serializability by locking
neighboring keys. In addition to the newly inserted key, it locks the
next key until the new key is inserted and locked. ARIES/IM [16]
reduces the number of locks for tables with multiple secondary in-
dexes. However, in some cases, these designs unnecessarily reduce
concurrency, because they do not differentiate locks on keys from
locks on ranges between keys.

Key range lock modes: Lomet [13] defined a set of key range
lock modes that were later implemented in Microsoft SQL Server.
The design began to separate between key and range. In the design,
a lock mode can consist of two parts, range mode and key mode.

The key mode protects an existing key value while the range
mode protects the range down to the previous key, aka ‘next-key
locking.’ For example, the ‘RangeX-S’ lock protects a range in ex-
clusive mode and a key with share mode. Two locks on the same
key value are compatible if the first components (protecting the
range) are compatible and the second components (protecting the
key value) are compatible.

Central to Lomet’s design are ‘insert’ locks on key ranges, which
conflict with shared and exclusive locks but not with each other.
In that sense, they are similar to ‘increment’ locks on key values.
Like Mohan’s design, Lomet’s lock protocol also requires locks
with ‘instant’ duration, i.e., locks that are held only for an instant.
When a user transaction inserts a new key value into a B-tree index,
it acquires a ’range insert’ lock for instant duration.

Since the design treats key and range not completely orthogo-
nally, however, it is sometimes too conservative. For example, it
lacks a ‘RangeS-N’ mode (N stands for ‘not locked’), which would
be the ideal lock to protect the absence of a key value. For exam-
ple, suppose an index on column T.a has keys 10, 20, and 30. One
transaction issues ‘Select * From T Where T.a = 15’, which leaves
a ‘RangeS-S’ lock on key value 20. When another transaction is-
sues ’Update T Set b = 1 Where T.a = 20’, its lock request conflicts

with the previous lock although these transactions really lock dif-
ferent database contents and actually do not violate serializability.
Similarly, the design lacks ‘RangeS-X’ and ‘RangeX-N’ modes.

Protecting a non-existing key value beyond the highest existing
key value in a B-tree leaf requires locking a key value in the next
leaf node. Thus, traditional key range locking sometimes adds I/O
operations merely for the purpose of locking.

Data-oriented execution: The Data-Oriented execution (DORA)
approach suggested by Pandis et al. [19] eliminates physical lock
contentions by assigning threads for logical partition of data. How-
ever, the tie between execution model and the locking protocol
has some assumptions and limitations analogous to PLP [20] and
PALM [21] for latching. Also, the work is orthogonal to concur-
rency of lock modes because they eliminate only physical lock con-
tentions, not logical contentions (logical concurrency).

2.2 Locking protocol
Graefe [4] defined a comprehensive and orthogonal set of key

range lock modes to improve simplicity as well as concurrency.
Our new transactional storage manager is the first to implement
these lock modes and thus permits a first empirical evaluation and
comparison of the design.

The design applies the theory of multi-granularity and hierar-
chical locking to key values, gaps (open intervals) between two
neighboring key values, and the half-open intervals comprising a
key and a gap. The locks modes simply are combinations of no-
lock, shared, and exclusive modes applied to a key value and gap.
There is no need for ‘insert’ or ‘instant’ locks. While Mohan’s
and Lomet’s designs employ ‘next-key locking,’ i.e., a gap between
keys is locked using the next-higher key value, this design uses
’prior-key locking’ instead.

Table 2: Key range lock modes.

N S X NS NX SN SX XN XS
N X X X X X X X X X
S X X × X × X × × ×
X X × × × × × × × ×

NS X X × X × X × X X
NX X × × × × X × X ×
SN X X × X X X X × ×
SX X × × × × X × × ×
XN X × × X X × × × ×
XS X × × X × × × × ×

Table 2, copied from [4], shows our key range lock modes. These
protect half-open intervals [A,B). For example, ‘SX’ mode (pro-
nounced ‘key shared, gap exclusive’) protects the key A in shared
mode and the open interval (A,B) in exclusive mode. S is a syn-
onym for SS, X for XX.

Using these locks, locks on key values and gaps are truly or-
thogonal. In the example above, the first transaction and its query
‘Select * From T Where T.a = 15’ can lock key value 10 (using
prior-key locking) in ’NS’-mode (key free, gap shared). Another
transaction’s concurrent ’Update T Set b = 1 Where T.a = 10’ can
lock the same key value 10 in ’XN’-mode (key exclusive, gap free).
Lomet’s design would take a lock in RangeS-S mode and thus have
lower concurrency than our NS-lock, which allows concurrent up-
dates on neighboring keys because NS and XN are compatible.

Like many other B-tree implementations [5], ours uses ‘ghost
records’ (aka ‘pseudo-deleted’ records) to simplify key deletion
and transaction rollback of user transactions. A logical deletion,

Algorithm 1: INSERT locking protocol.
Data: B: B-tree index, L: Lock table
Input: key: Inserted key

leaf page = B.Traverse(key); // hold latch(∗)

slot = leaf page.Find(key);
if slot.key == key then //Exact match

L.Request-Lock(key, XN);
if slot is not ghost then

return (Error: DUPLICATE);
leaf page.Replace-Ghost(key);

else //Non-existent key. In this case, slot is the previous key
if slot < 0 then //hits left boundary of the page

L.Check-Lock(leaf page.low fence key, NX);
else

L.Check-Lock(slot.key, NX);
begin System-Transaction

leaf page.Create-Ghost(key);
L.Request-Lock(key, XN);//lock the ghost
leaf page.Replace-Ghost(key);

(*) To reduce the time latches are held, all lock requests are
conditional. If denied, we immediately give up and release latches,
then lock unconditionally followed by a page LSN check.

instead of actually erasing a record, merely marks it invalid by flip-
ping a ‘ghost bit’ in the record header. Ghost records do not con-
tribute to query results, but the key of a ghost record does partici-
pate in key range locking just like the key of a valid record. Ghost
records are removed after the user transaction is committed, e.g.,
when the space is needed for an insertion.

As described in [3], each B-tree node in our design contains two
fence keys that define the lowest and highest permissible key value
in that node. One fence key is inclusive, the other is exclusive.
When required, fence keys are ghost records that cannot be re-
moved. The fence keys of the root node have values−∞ and +∞.
The fence keys in all other nodes are copies of separator keys in an-
cestor nodes. Fence keys enable efficient key range locking as well
as inexpensive and continuous, yet comprehensive, verification of
the B-tree structure and all its invariants [6].

When a query searches for a non-existent key that sorts below
the lowest valid key value in a leaf page but above the separator
key in the parent page, a ’NS’-lock on the low fence key in the leaf
is used. Since the low fence key in a leaf page is exactly equal to
the high fence key in the next leaf page to the left [3], key range
locking works efficiently across leaf page boundaries.

Point queries: Algorithms 1 and 2 show the pseudo code for
INSERT and SELECT queries (UPDATE and DELETE are omitted
due to lack of space). We first check if the corresponding leaf page
has the key we are searching for. If so, a key-only lock mode such
as SN and XN suffices. This is true even if the existing record
is a ghost record. Furthermore, the existing ghost record speeds up
insertion, which only has to turn it into a non-ghost record (toggling
the record’s ghost bit and overwriting non-key data).

The design uses system transactions for creating new ghost records
as well as all other physical creation and removal operations. As a
system transaction does not modify the database’s logical contents,
only the database’s physical representation, it takes no locks (e.g.,
there is no need for ‘insert’ locks) but only checks for existence of
conflicting locks (e.g., an existing shared lock on the key range).
Moreover, a system transaction runs in the same thread as the in-
voking user transaction, commits without flushing the log to stable

Algorithm 2: SELECT locking protocol.
Data: B: B-tree index, L: Lock table
Input: key: Searched key

leaf page = B.Traverse(key); // hold S latch
slot = leaf page.Find(key);
if slot.key == key then //Exact match

L.Request-Lock(key, SN);
if slot is not ghost then

return (slot.data);
else

return (Error: NOT-FOUND);
else //Non-existent key

if slot < 0 then //hits left boundary of the page
L.Request-Lock(leaf page.low fence key, NS);

else
L.Request-Lock(slot.key, NS);

return (Error: NOT-FOUND);

Table 3: Lock modes for cursors.

Cursor Type Ascending Descending
Boundary Type Incl. Excl. Incl. Excl.
Initial (Exact Match) S∗ NS SN∗ N
Initial (Non-Existent) NS NS S S
Initial (Non-Existent; Fence-Low) NS NS NS NS
Next / Page Move S (SN if last) S (NS if last)

storage and remains committed even if the invoking user transac-
tion rolls back. This separation of user transactions and system
transactions greatly simplifies and speeds up internal code paths.

Range queries: Range queries such as ‘Select * From T Where
T.a Between 15 And 25’ need cursors protected by lock modes as
shown in Table 3. The lock mode to take depends on the type of
cursors (ascending or descending) and on the inclusion or exclusion
of of boundary values in the query predicate (e.g., key > 15 or
key ≥ 15). When a cursor initially locates its starting position, it
either takes a lock on the existing key (exact match), or the previous
key (non-existent) or the low fence key of the page). Then, as it
moves to next key or next page, it also takes a lock on the next key
(including fence keys).

Because a cursor takes a lock for each key, the overhead to access
the lock table is relatively high. This is the reason why the locks
marked with (*) in Table 3 are more conservative than necessary.
For example, an ascending cursor starting from exact-match on A
could take only an ‘SN’ lock on A and then convert to an ‘S’ lock
on the same key when moving on to the next key. However, this
doubles the overhead to access the lock table. Instead, the storage
manager takes the two locks at the same time to reduce the over-
head at the cost of slightly lower concurrency, which is the same
trade-off as the coarse-grained lock discussed in next section. In
Section 6, we evaluate the performance of this scheme.

3. INTENT LOCKS
The previous section discussed the design of record-level lock-

ing. Although such granular locks guarantee correctness with max-
imal concurrency, they might cause an unacceptable overhead for a
transaction that reads or writes a large number of records. Hence,
most DBMSs also provide coarse-grained intent locks in order to
support both coarse and fine-grained locks on the same data.

However, intent locks may become a source of physical con-
tention as a large number of concurrent threads simultaneously ac-
quire and release them. In this section, we present our novel intent
locking algorithm, Lightweight Intent Locks, which is a substan-
tially simpler, faster, and more scalable implementation of intent
locks for modern hardware.

3.1 Prior Techniques
Intent locks allow scanning and bulk-modification transactions

to protect their accesses with only a single lock, dramatically re-
ducing overhead compared to taking potentially millions of record-
level locks. With the exception of absolute locks, intent locks are
compatible and cause no logical contention.

Granularity of locks: Table 4, below, shows coarse locks in-
vented by Gray et al. [7]. A transaction takes an IS or IX lock on
a high-level object (e.g., Index) in addition to record-level locks.
These intent locks are compatible each other. On the other hand,
absolute locks such as S, X and SIX (S+IX) on higher levels are
taken by table scan or lock escalation, which conflict with all the
other transactions.

Table 4: Intent locks.

N S X IS IX SIX
N X X X X X X
S X X × X × ×
X X × × × × ×
IS X X × X X X
IX X × × X X ×

SIX X × × X × ×

Physical contention on intent locks: However, each transaction
must create a lock request for intent locks in the lock table and
then remove it when it commits. Further, because intent locks are
coarse locks, a large number of transactions will take intent locks
on the same object (e.g., disk volume intent lock). This causes
physical contention on the lock bucket because all operations in a
lock bucket are synchronized by mutexes.

Johnson et al. [9] observed that the physical contention on intent
locks causes a significant bottleneck on many-core architectures
where tens or hundreds of concurrent threads might be racing on
the same intent lock. They proposed Speculative Lock Inheritance
(SLI) to eliminate the contention. SLI allows a transaction to in-
herit intent locks from the previous transaction on the same thread,
bypassing both the acquisition and release of intent locks.

Even in this scheme, all transactions must release intent locks
upon absolute lock requests because otherwise absolute locks would
never be granted. In other words, a single lock escalation flushes
out all inherited intent locks. All concurrent threads then must re-
acquire intent locks, again causing physical contention.

The root problem here is the inefficiency and low scalability of
intent locks. Instead of working around it by inheriting locks, our
goal is to improve the performance of intent lock itself.

3.2 Lightweight intent lock
In order to address the problem, we devised Lightweight Intent

Lock (LIL), a dramatically simpler and faster intent lock scheme
designed for modern hardware. The core idea of LIL is to main-
tain, instead of lock queues, a set of lightweight counters that is
separate from the main lock table. Almost all code paths in LIL are
extremely short and only use lightweight spinlocks. Mutexes are

Algorithm 3: Lightweight intent lock: Request-lock.
Data: G: Global lock table, P : Private lock table
Input: i: Index to lock, m: lock mode (IS/IX/S/X)

if P [i].granted[m] is already true then
return;

while Until timeout do
begin Critical-Section{G[i].spinlock}

if m can be granted(∗) in G[i] then
++G[i].granted counts[m];
P [i].granted[m] = true;
return;

if m ∈ {S,X} then
Leave a flag to announce absolute locks(∗);

base version = G[i].version;
cur version = base version;
while cur version == base version do

Conditional-Wait(G[i].mutex, 1 millisec);
cur version = G[i].version;

(*) To not starve absolute locks, we also maintain the count of waiting
locks for each lock mode and give absolute locks higher priority. For
example, we do not grant IX locks while S lock request is waiting.

Algorithm 4: Lightweight intent lock: Release-lock.
Data: G: Global lock table, P : Private lock table
Input: i: Index to release

if P [i].granted[m] are all false then
return;

begin Critical-Section{G[i].spinlock}
++G[i].version;
foreach m do

if P [i].granted[m] == true then
--G[i].granted counts[m];

if Released any lock that was blocking other thread then
Broadcast(G[i].mutex);

used only when an absolute lock is requested.
The design of LIL is based on the observation that intent locks

have a limited number of lock modes and infrequent logical con-
tention. Therefore, a simpler method is more appropriate than the
heavyweight mutexes, lock queues and point-to-point communica-
tions used in the main lock table for non-intent locks.

Global and private lock table: LIL maintains a private lock ta-
ble (PLT) for each transaction in addition to a single global lock ta-
ble (GLT) shared by all transactions. The PLT records intent locks
obtained by the transaction. As the PLT has per-transaction data,
the transaction can efficiently access its own PLT without synchro-
nization. The GLT records the count of granted lock requests for
each lock mode (S/X/IS/IX). The GLT has no lock queues, thus the
only inter-thread communication is a broadcast.

Lock acquisition and release: Algorithm 3 and 4 show the
pseudo code for lock acquisition and release in LIL.

When a transaction requests an intent lock, it first checks its own
PLT. If it already has a granted lock that satisfies the need, it does
nothing. Otherwise, it atomically checks the GLT and increments
the counter for the desired lock mode. Whether the lock request
is immediately granted or not, the critical section for this check is

extremely short and a spinlock suffices, avoiding mutex overheads.
If the request is not immediately granted, we wait for the release

of locks preventing this request from being granted. We use mutex
lock for this situation to avoid wasting CPU cycles, but this happens
only when there is an absolute lock request or this transaction is
requesting an absolute lock.

Upon lock release, we do the reverse, atomically decrementing
the counter. If other requests on the lock were waiting on the cur-
rent transaction, we broadcast a message to all waiting threads.

As a mutex broadcast after the critical section might cause a race
condition, each waiting thread wakes up after a short interval (e.g.,
1ms) and repeatedly checks the version of the lock and tries again
if some transaction released a lock.

Deadlock prevention in LIL: Regarding deadlocks, we employ
a simple timeout policy to prevent deadlocks in LIL. Waits on in-
tent locks happen much less often than non-intent locks. In ad-
dition, the latency of scanning and bulk-modification transactions,
which are the only types of transactions that could cause waits in
LIL, is much higher than that of other types of transactions. Thus,
delayed deadlock detection due to the timeout policy does not have
a significant impact on overall performance. Hence, a transaction
is simply aborted when its wait time exceeds a certain threshold.
To avoid repeatedly aborting a scanning transaction, we assign a
longer timeout for absolute lock requests.

LIL can cause neither deadlocks nor long waits; therefore there
is no chance of deadlocks between locks in LIL and locks in the
main lock table (we discuss how we handle deadlocks in the main
lock table in the next section). In other words, the main lock table
does not need to be aware of intent locks at all. Thus, LIL simplifies
not only intent locks but non-intent locks and shortens their critical
sections. We evaluate the performance of LIL in Section 6.

4. DEADLOCKS
Deadlocks can cause major bottlenecks in databases when two or

more competing transactions permanently block each other from
acquiring locks that they both need in order to succeed. For ex-
ample, concurrent transactions may acquire locks in an order that
causes a cycle in wait-for relationships. Deadlock resolution re-
quires at least one of the transactions causing the deadlock to re-
lease locks. This involves either a partial rollback, a lock
de-escalation, or most commonly a transaction termination. The
throughput of the entire system depends on the efficiency and ac-
curacy of the deadlock detection and resolution algorithms.

In this section, we describe our deadlock detection algorithm,
which extends the native Shore-MT adaptation of the Dreadlocks [12]
technique for the database context.

4.1 Prior Techniques

Traditional methods: Deadlock handling methods in databases
are grouped into two categories [22]. The deadlock prevention ap-
proach ensures that the database never enters into a deadlock —
for example our timeout policy for intent locks described in Sec-
tion 3.2. Another approach is deadlock detection, which detects
deadlocks when they happen and resolves the situation by rolling
back some transactions.

The downside of the prevention approach is that prevention al-
gorithms such as wound-wait and wait-die proactively catch suspi-
cious situations and rollback transactions, which may result in false
positives. A timeout algorithm with long waits causes fewer false
deadlocks, but delays resolution of the situation.

The main drawback of the detection approach is its high com-

A B

C D

E

A waits for B

Figure 2: Examples of Livelock and Deadlock.

Table 5: How the Dreadlocks technique works.

Step Digests
A B C D E

1 {A} {B} {C} {D} {E}
2 {A,B} {B} {C,D} {D,E} {E,C}
3 {A,B} {B} {C,D,E} {D,E,C} {E,C,D}
4 {A,B} {B} Deadlock! Deadlock! Deadlock!

putational overhead. Constructing a wait-for graph and detecting a
cycle in it requires checking all transactions’ status and probing the
lock queues they are waiting on. This is especially problematic on
many-cores due to synchronization between threads. Atomically
constructing or maintaining such a global data structure requires
either a long blocking or a large number of mutex calls for synchro-
nization, both unacceptable overheads in a many-core architecture.
Thus, a common practice is to run detection only periodically (e.g.,
once a minute), but, again, this delays deadlock detection.

Agrawal et al. [1] evaluated the performance of each approach by
simulation. One of the conclusions was that there is no one-size-
fits-all solution among them. The best algorithm and its parameters
highly depend on characteristics of transactions that are usually un-
known a priori.

Dreadlocks Algorithm: Shore-MT [10] implemented the Dread-
locks technique (notice the “r”) to address the issues. To the best
of our knowledge, Shore-MT is the first and to this date the only
DBMS that employs Dreadlocks. Dreadlocks is a spinlock-based
algorithm invented by Koskinen et al. to efficiently detect dead-
lock when running on many-core hardware [12]. The basic idea
is that each core (thread) recursively collects the identity of cores
it depends on (dependency). If the core finds itself in the depen-
dencies, there must be a cycle in the wait-for relationships. A
similar idea has been explored in deadlock detection in distributed
databases [18]. In order to efficiently collect dependencies on many-
core hardware, the Dreadlocks algorithm maintains only local in-
formation in each core, called a digest, which is asynchronously
propagated to the other cores waiting for that core.

Figure 2 and Table 5 illustrate how the Dreadlocks technique
works. Each core starts with only itself in the digest. At the second
step, each core checks another core it is waiting for and adds its
digest to its own digest, for example A adds B to its digest. At
the third step, C, D, and E find more digests in the cores they are
waiting for because of the previous propagation. As a consequence,
C, D, and E all contain each other in their digests. Hence, at the
last step, C finds itself in D’s digest, detecting a deadlock. D and
E detect deadlocks accordingly. As for A, no deadlock is raised
because B’s digest does not contain A.

The Dreadlocks technique spins on each waiting thread or each
waiting lock request. In the case of per-lock spins on each lock, the
technique works well only when the number of locks is smaller than
the number of cores. However, in databases, there are usually many
more locks than threads and cores. Hence, per-thread spinning is
the more practical choice.

The Dreadlocks can either fully store the identity or use a Bloom
filter to probabilistically (but without false negatives) detect dead-
locks. As the maximum number of concurrent transactions is not
known a priori, Bloom filters are more appropriate. They are also
much more efficient to read and compute than other forms of full
dependency information such as the ’String’ transmitted in [18].

4.2 Dreadlocks technique for databases
The Dreadlocks approach is highly scalable, simple, and appli-

cable to many situations. It finds deadlocks very accurately and
quickly with low overhead because of its simplicity and local-only
spin accesses. However, Dreadlocks have a few issues to be adapted
for use in database systems.

In this section, we describe our implementation of Dreadlocks,
which is based on the Shore-MT’s implementation of Dreadlocks
with the following additional improvements: (1) capture deadlocks
caused by lock conversions (e.g., from shared to exclusive), (2)
avoid pure spinning without causing false deadlock detection, (3)
resolve deadlocks more efficiently in the existence of flush pipelin-
ing.

Lock modes, queues, and conversions: First, the original Dread-
locks algorithm assumes that each lock has a single “owner”. Each
waiter takes the union of its digest and that of the owner of the lock.
In databases, locks have various lock modes such as S, X, and NX.
Furthermore, a threads may convert an already-granted lock. Sup-
pose a thread A took an SN lock on some key. Another thread B
then took an SN lock on the key. The thread A then tries to convert
the lock to XN mode, becoming a waiter due to B’s SN lock (SN
and XN are incompatible). Even a granted lock might be also a
waiter, thus database locks do not have a good notion of “owner”.

Also, in order to achieve fair scheduling, database lock requests
are placed in lock queues which grants locks in the request order. In
the above example, if another thread C comes with a request for an
SN lock, it must not be granted because of the waiting conversion
request by A. If the lock manager were to grant an SN lock to C
(and other subsequent requests), A might starve. Thus, C should
wait until B and then A finish and release their locks. Hence, a
database lock might have to wait even though all of the granted
locks in the queue are compatible with the request.

Algorithm 5 shows a Dreadlocks-based deadlock detection al-
gorithm adapted to databases, initially implemented in Shore-MT.
The difference from the Shore-MT implementation is that it can
handle deadlocks caused by lock conversions.

Each thread repeatedly collects the digest and computes the union
of its own fingerprint. The fingerprint of a thread is a randomly and
uniquely chosen n bits out of m bits, the size of Bloom filters. For
example, let n = 3,m = 512. The fingerprint of thread A 1 might
be (12,43,213) while that of B might be (43,481,500). The initial
digest of Transaction A is an array of 512 bits. All bits are OFF
except 12th, 43rd, and 213th bits which are ON. When we take the
union of the other digests, we simply compute bitwise OR.

Consider two threads A and B that both have lock requests on
the same queue. If B precedes A in the lock queue, B has higher
priority and A can be granted only when its requested lock mode is
compatible with B’s requested (not only granted) lock mode. On
the other hand, if A precedes B in the queue, A has priority and A
can be granted as far as its requested lock mode is compatible with
B’s granted lock mode. In either case, if A’s lock request cannot be
granted because of B, B is said to be A’s dependency and B’s digest

1We assign fingerprints per-thread instead of per-transaction be-
cause a transaction might be carried out by multiple parallel
threads.

Algorithm 5: Request-Lock with Dreadlocks
Data: L: Lock table
Input: xct: Transaction, key: Locked Key, m: Lock mode

struct request {x: transaction, gm: granted mode, rm:
requested mode, st: status};
queue = L.find or create queue (key);
myreq = (x: xct, gm: N , rm: m, st: waiting);
Add myreq to queue or convert existing request;
while true do

digest = xct.fingerprint;
foreach req ∈ queue do

if req == myreq then
continue; // ignore myself

if req precedes myreq then
if compatible(req.rm, m) then

continue; // ignore compatible predecessor

else
if compatible(req.gm, m) then

continue; // ignore compatible successor

if req.x.digest ⊇ xct.fingerprint then
if myself should be rolled back then

return (Error: DEADLOCK);

digest = digest ∪ req.x.digest;
if digest == xct.fingerprint then

myreq.st = granted;
myreq.gm = m;
return (SUCCESS);

xct.digest = digest;

is added to A’s digest. Further, if B’s digest contains A’s fingerprint,
it implies a deadlock. Hence, either of the transactions is aborted,
depending on the deadlock recovery policy.

Sleep on spin and backoff: Second, the original Dreadlocks ap-
proach used spinlocks. However, databases might have to process
more concurrent threads than the number of cores. Suppose an ad
hoc query arrives when there are already as many running threads
as the number of cores. If the new query simply waits, its query
latency could be severely affected — especially when the query is
short and read-only (as often is the case with ad hoc queries). On
the other hand, if we were to immediately run the query, a purely
spin-based Dreadlocks would severely damage the overall through-
put, greedily wasting CPU resources. This is an even more signifi-
cant issue because databases have various background threads such
as buffer pool cleaners and log flushers. Keeping all CPU cores
busy might affect such critical operations.

A simple solution for this problem is to have each thread sleep
after each spin, and this was in fact the approach implemented in
Shore-MT. However, this caused frequent false deadlock detections
in some cases.

For example, suppose thread A, B and C update the same re-
source. Let A currently hold an X lock on the resource. First B and
then C request locks on the resource and start waiting; thus their
digests contain A. To avoid wasting CPU cycles, B and C fall into a
sleep. When A commits and releases locks, A wakes up B who will
be granted the lock next. However, C is still asleep. Then, thread
A starts another transaction and accesses the same resource. Be-
cause C has not yet refreshed its digest, A finds itself in the digest
of C and aborts itself as deadlock. This repeats until C wakes from
sleeping, wasting CPU cycles and lowering system throughput.

In the experimental section, we find that frequent false deadlocks
rapidly reduce throughput as the number of concurrent threads in-
creases, defeating the purpose of the sleep.

The problem here is that the digest of threads waiting on some
lock becomes outdated when its dependency is released. In the pure
spinning algorithm, such a digest is quickly refreshed and never
causes false deadlocks. However, pure spinning wastes too many
CPU cycles.

Our solution for this problem is to add backoff at lock release.
Whenever we release a lock, we leave a flag on all threads wait-
ing for the lock which tells the digest of the thread is outdated.
Upon the next spin, such a thread is tentatively ignored from the
digest computation to avoid false deadlocks. The flag is turn off by
the marked thread itself when it wakes up next time and refreshes
its digest. Rather than actually waking up all the waiting threads
to make them immediately update the digest, this approach min-
imizes the overhead of lock release (which is the critical path of
the highly contended resource). In Section 6, we observe that this
sleep-and-backoff method prevents extreme performance degener-
ation against the number of concurrent threads.

4.3 Deadlock resolution for flush-pipeline
When we detect a deadlock, we must roll back a transaction

to release its locks. The deadlock resolution policy affects the
entire throughput because an inefficient policy keeps voiding the
work each transaction made and might prevent the entire workload
from proceeding. Shore-MT’s policy is, like traditional approaches,
to select the transaction that started most recently, hopefully thus
rolling back the least amount of work while also avoiding starva-
tion.

However, we observed that this policy is inefficient in the exis-
tence of flush pipelining. When the database is pipelining transac-
tions, the cost of aborting one transaction is not only wasting its
own work. To release locks after commit, a transaction has to make
sure its log is flushed. Therefore, the aborted pipeline has to flush
its logs before releasing its locks. This causes a substantial wait in
the pipeline which would be otherwise free from flush waits. If we
frequently and randomly keep aborting each pipeline, we lose the
benefit of using flush pipelines.

Our solution for the issue is to consider the length of the pipelines,
not the current transaction. When two transactions are in deadlock,
we check their pipelines and compare the number of completed
transactions in each pipeline. In Section 6, we observe that kill-
short policy, which aborts the pipeline with fewer completed trans-
actions, avoids repeated deadlocks and achieves up to 4× faster
throughput than other deadlock resolution policies.

5. EARLY LOCK RELEASE
This section presents a novel variant of Early Lock Release (ELR),

the technique that allows a transaction to release its locks as soon
as it has formatted a commit record in the log buffer, i.e., before
it flushes its commit record to a stable storage. The basic idea of
ELR has been previously proposed and refined [2, 11, 23]. How-
ever, a straightforward implementation violates serializability for
read-only transactions as detailed in Section 5.2. Obvious reme-
dies have critical shortcomings, e.g., limiting ELR to S (shared)
locks or adding commit delays to all read-only transactions.

We propose a simple, efficient and safe (serializable) implemen-
tation of ELR that addresses all of the issues above. In our experi-
ments, we verified that such a complete ELR (which we call “SX-
ELR”) achieves 3×-10× better throughput compared to ELR of
S-locks only (S-ELR) and without ELR. To the best of our knowl-
edge, our work is the first to repair the serializability anomaly of

a straightforward ELR scheme without holding all read-only query
results, to verify it in an implementation, and thus to realize a seri-
alizable ELR of both S and X locks.

5.1 Prior Techniques
In the context of distributed databases, it has been known that

S locks can be released right after the commit request. This also
means that a read-only transaction can release all locks and im-
mediately finish without interacting with logs at all [17], which is
essential to ensuring low query latency for read-only queries. Such
S-lock only ELR (S-ELR) is indeed always serializable because a
transaction will never read any resources after its commit request.

DeWitt et al. [2] briefly mentioned the possibility of ELR for all
kinds of locks by considering dependency between transactions.
However, the paper does not mention the case where read-only
transactions bypass logging. Although the obvious alternative is
letting all read-only transactions wait for log flushing, it has the
problem we discuss later in this section.

Johnson et al. [11] implemented ELR for all kinds of locks by
releasing all locks as soon as the location of the commit log in the
log buffer (LSN) is finalized, observing a significant performance
improvement. This straightforward ELR guarantees serializable re-
sults for read-write transactions because a transaction log manager
by its nature prevents them from returning results to users until their
dependent transactions exit [11]. However, it is not serializable
when there exists a read-only transaction which bypasses logging.

5.2 Anomaly of straightforward ELR
We begin by giving an example case where a straightforward

ELR causes a non-serializable result, and then describe the princi-
ples to make it serializable.

Table 6 demonstrates such an anomaly. Consider a read-only
transaction, A, and a read-write transaction, B. When B updates
the tuple D3, the uncommitted data is protected by an X lock until
B’s commit. Then, ELR releases the X lock right after B requests
commit. A proceeds to read D3 and immediately commits without
log flush because it is a read-only transaction. Because the commit
log of B has not yet been flushed, if a crash happens at this point, B
is rolled back during recovery. However, the user already received
D3 updated by B, which is not a serializable result.

The anomaly can cascade arbitrarily if the user does subsequent
operations based on transaction A’s result, e.g., inserting the value
into another database. The root problem is that a read-only trans-
action never interacts with logs, thus simply doing SX-ELR allows
them to publish uncommitted data that might yet roll back during
recovery after a system failure.

Table 6: Non-serializable result with Straightforward SX-ELR.

Step Read-Only Read-Write Log Buffer LSN
Xct A Xct B Latest Durable

1 Write D3 130 100Locks D3 (X-granted)
2 (Read D3) Write J5 150 100Locks D3 (S-wait) D3,J5 (X-granted)
3 (Read D3) Commit Request 200 100Locks D3 (S-wait) D3,J5 (X-granted)
4 Read D3 (Flush wait) 230 100Locks D3 (S-granted) ELR
5 Commit (Flush wait) 250 120
6 User sees D3. (Flush wait) 270 140
7 Crash! 140

One naive fix for the problem is to make all read-only transac-
tions wait for the log buffer before returning results. For example,
transaction A could check the latest LSN of log buffer as of its own
commit time (250), then wait until the log buffer makes all logs up
to the LSN durable. However, this essentially means that all read-
only transactions have to do log flushes even when they have not
touched any uncommitted data. This substantially slows down all
read-only queries because a typical read-only query finishes within
micro-seconds while a log flush takes at least several milli-seconds
on hard disks. Instead, if another concurrent and ad hoc (not in
flush-pipeline) read-only transaction C reads only committed data,
C should immediately return the results without log flush.

5.3 Safe SX-ELR
The principle rule here is that a read-only transaction must wait

until the log flush of other transactions it depends on. In the above
case, transaction A should wait until the log buffer’s durable LSN
becomes 200, which is the LSN of B’s commit log. Notice that
A must wait until 200, not 130 (LSN of D3). We initially con-
sidered another naive fix, which checks the maximum page LSN
each read-only transaction touched (130) and waits until the LSN
becomes durable. However, even if the particular update operation
log becomes durable, the dependent transaction (B) might be later
rolled back if its commit log is not yet durable.

Based on the observations above, our solution for SX-ELR is
described in Algorithm 6 and 7. The key idea is to leave a tag on
each lock queue in the lock table. The tag annotates when the latest
durable modification happened to the data protected by the lock.
Every transaction checks such tags whenever it acquires a lock and
stores the maximum value of the tags it observed. When the trans-
action turns out to be read-only at commit time, it compares the
maximum tag with the durable LSN and immediately exits if the
maximum tag is already durable. Otherwise, it wakes up the log
flusher and waits until the LSN becomes durable. In other words,
the maximum tag is the serialization point of the read-only trans-
action. If the thread is pipelining a next transaction, we inherit the
maximum tag (commit LSN if the current transaction is read-write)
to the next transaction, anticipating the case where the next trans-
action is also read-only.

Read-write transactions, on the other hand, update the tags with
their commit log’s LSN when they release X locks during SX-ELR.
In the above example, transaction B updates the tag of D3 and J5
with the value 200, its commit LSN. This is required only for X
locks which imply logical data update done by the transaction. The
same rule applies to coarse locks (e.g., volume-lock) with an addi-
tional descendant tag. The descendant tag is updated when early-
releasing SIX or IX locks while the other tag (self tag) is updated
only when early-releasing absolute X locks. Transactions that take
intent locks (e.g., IS) check the self-tag while those that take abso-
lute locks (e.g., S) check both the self and descendant tags.

The above scheme is very simple and has negligible overhead
because it adds just one integer comparison during lock acquisition
and release. One assumption here is that the deletion of a row must
leave a ghost record, and system transactions must not eliminate
this ghost record until the modification has been committed and
made durable. Because we rely on the existence of the lock queue
which holds the tag, eliminating the ghost record or corresponding
lock queue while running the user transaction does not ensure se-
rializable results. Therefore, system transactions for maintenance
database operations (e.g., defragmentation) must ensure the pages
they are cleaning do not have any uncommitted data. This can be
done by tracking the starting LSN of the oldest active transaction
in the system, and by comparing it with the PageLSN [15].

Algorithm 6: Safe SX-ELR: Request-Lock
(based on Algorithm 5)
. . .
if myreq is granted then

myreq.st = granted;
myreq.gm = m;
xct.max tag = max(xct.max tag, queue.tag);
return (SUCCESS);

. . .

Algorithm 7: Safe SX-ELR: Commit Protocol
Data: L: Lock table, M : Log manager
Input: xct: Transaction to commit

if xct did not make any writes then //read-only xct
Release all locks. (S-ELR: Always safe);
M .check durable(xct.max tag);

else//read-write xct
commitLSN = M .append commit log();
// SX-ELR with the commit LSN
foreach req ∈ xct.locks do //in reverse acquire-order

queue = L.find queue (req.key);
queue.release(req);
if req.gm ∈ {X,XN,XS . . .} then //update tag

queue.tag = max(queue.tag, commitLSN);

M .flush until(commitLSN);

6. PERFORMANCE EVALUATION
We have developed a prototype database engine with all of our

techniques proposed in this paper by modifying Shore-MT 6.0.1.
Shore-MT is specifically designed to achieve high performance and
concurrency on many cores. The original Shore-MT team demon-
strated performance and scalability with comparisons to several
commercial and open-source database systems [10]. To separate
the effects of other improvements we made in B-trees [6], our ex-
periments mainly compare performance of the modified storage en-
gine (Modified) with and without individual techniques. However,
we additionally compare with the original Shore-MT (Original) in
the last ELR experiment to show the end-to-end performance im-
provements with all of our techniques combined. In other experi-
ments, we observe that Modified performs substantially faster than
Original, too, although the improvements come from both the tech-
niques in this paper and the other techniques in [6].

Except where explicitly noted, all runs ensure full serializability.
Lock escalation is disabled for higher concurrency. For serializabil-
ity with flush-pipelines, our implementation flushes the log before
releasing locks when the current transaction of the pipeline is se-
lected for rollback and restart.

6.1 Environment
Except where explicitly noted, all experiments were performed

using a HP Z600 system (6-core 2.67 GHz Intel Xeon CPU with 12
MB cache, 6 GB of RAM, running x86 64 Fedora Core 14 Linux).
The size of the buffer pool always exceed the size of the working
data set. For transactional logging, we used either a hard disk (ran-
dom seek time: 10ms) or an SSD (random seek time: 20-50us)
formatted in ext4.

We also performed a small number of experiments on Sun Ni-
agara hardware with 64 hardware contexts (running Solaris 10).
On the Niagara system, the transactional log is in a RAM-resident
tmpfs. Experiments that require a large number of CPU cores were

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t [

k
tp

s]

Exact Hit Ratio [%]

Original, Next-key lock
Modified, Lomet lock modes

Modified, Graefe lock modes

Figure 3: Key range lock concurrency.

run on Niagara while experiments that are sensitive to logging per-
formance were performed on the Z600 because the Niagara system
has no SSD drive.

6.2 Dataset and query workload
In all experiments, we use the TPC-B 2 benchmark datasets and

query workloads, which consists of four tables (branch, teller, ac-
count and history) and one transaction that updates all four tables.
We chose a relatively simple benchmark to study the basic be-
havior of fundamental choices regarding transaction processing in
databases. Also, the closest prior work (Shore-MT) used TPC-B
in their experiments [11]. Repeating the same setting is another
reason we use TPC-B for our experiments.

The database initially contains 20 branches, 200 tellers, 2 mil-
lion accounts, which constitute a database of about 250 MB. All
experiments are hot-start, meaning we load all data into the buffer
pool before measuring the performance.

In some experiments, we modify the update queries in the TPC-B
transaction to SELECT queries on the same record so that we also
have read accesses to the tables. In such experiments, we vary the
fraction (Read Ratio) of update queries converted to read queries.
When the Read Ratio is zero, the workload is the original TPC-B.

6.3 Results
All results are based on 20 runs and we show the arithmetic mean

and the 95% confidence interval.

Key range locks: First, we evaluate the concurrency of the key
range lock modes from Section 2, focusing on the differences be-
tween Lomet’s and Graefe’s design of lock modes. In this experi-
ment, each transaction issues 4 range searches and then 1 update on
the TPC-B teller table. The update operation happens always on an
existing key. The range search, on the other hand, starts and ends at
existing keys for P% of the range queries, with P varying from 0 to
100. Otherwise the cursor scans a range between keys. The range is
chosen with random uniform. The table size is chosen to be small
in order to force lock contention and bring out the differences be-
tween the locking designs. A similar situation would happen on
much larger tables when the access is skewed, for example when
each transaction focuses recent data.

2http://www.tpc.org/tpcb/default.asp

 0

 5

 10

 15

 20

 25

 30

 35

 40

101 102 103 104

E
la

ps
ed

 ti
m

e
[s

ec
]

Total Number of Absolute Locks in 106 xcts

Base
SLI
LIL

Figure 4: Intent lock overhead. (on 64-core Niagara)

We measured the elapsed time to process 100K such transactions
on 6 threads in the Z600 machine. Figure 3 shows the performance
with Lomet’s and Graefe’s lock modes. We simulated Lomet’s lock
modes by taking slightly conservative lock modes e.g., SS instead
of NS, when Lomet’s set of lock modes is missing a more precise
mode, e.g., when a search does not hit an existing key. As the
result shows, Graefe’s lock modes are more precise and concurrent,
achieving up to 15% higher throughput.

We also compared the original Shore-MT locking system, which
uses only S or X locks on the next key as suggested in ARIES/KVL.
It resulted in 4× to 5× lower throughput. However, a good part of
this difference is due to an optimized page layout [6].

Intent locks: Next, we verify the efficiency and scalability of
light-weight intent locks (LIL) from Section 3. We implemented
LIL and compared it to the performance of Shore-MT’s Specula-
tive Lock Inheritance (SLI) [9]. In order to isolate the overheads
of intent locks, this experiment only acquires and releases intent
locks. Each transaction takes intent locks on the 4 tables in TPC-B
(branch, teller, account and history).

Half of the transactions take IX locks on the tables and the vol-
ume. The other transactions take IS locks on the tables and the
volume. We randomly take absolute locks on the tables and the
volume, taking X locks on the tables and IX on the volume. 1 in 4
transactions takes an X lock on the volume.

Because the physical contention of intent locks is particularly
significant with many cores [9], this experiment runs 1 million
transactions with 60 concurrent threads on the Niagara machine.

Figure 4 plots the total elapsed time for varying numbers of ab-
solute locks taken during the experiment. If it takes 10 seconds
to process 1 million empty transactions, the maximum possible
throughput is only 100k even if we have no other bottlenecks.

As the figure shows, SLI performs about 5× to 6× faster than the
base performance. LIL performs even faster than SLI for another
factor of 3 to 5. The speed up is due to two reasons. First, LIL is
much less affected by absolute locks while SLI relies on inherited
locks, which are flushed out by absolute locks. Second, our sim-
pler and lightweight intent locking protocol has much shorter code
paths, fewer shared objects and less mutex usage. Lock acquisition
and release on LIL is significantly faster than that of SLI. Also, LIL
simplifies the code paths for non-intent locks because it completely

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 9 12 18 30 60

T
hr

ou
gh

pu
t [

k
tp

s]

#Threads [MPL]

Spin
Sleep

Sleep+Backoff

Figure 5: Dreadlocks: spin, sleep, and backoff. (on 6-core Z600)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100 120
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

D
re

ad
lo

ck
s

S
pe

ed
-u

p

N
um

be
r

of
 d

ea
dl

oc
ks

 (
#D

L)
 [1

03]

#Threads [MPL]

vs. Wound-wait
vs. Wait-die

Wound-wait #DL
Wait-die #DL

Figure 6: Speed-up by Dreadlocks compared to traditional
Wound-Wait and Wait-Die (on 64-core Niagara).

separates intent locks and non-intent locks.

Dreadlocks: As described in Section 4, Dreadlocks is an effi-
cient and scalable algorithm to detect deadlocks in many-core set-
tings, but when there are many more concurrent threads than the
number of CPU cores, Dreadlocks may greedily waste CPU cycles.

In this experiment, we evaluate the algorithm to alleviate the
bottleneck. Figure 5 compares the three policies described in the
earlier section; simple spinning, sleep (10 ms) after each spin and
sleep with backoff to suppress false deadlock detections. The fig-
ure shows the throughput of original TPC-B queries with varying
numbers of concurrent transactions. In order to isolate the CPU-
overhead related to deadlocks, this experiment uses lazy commits.
Hence, almost all bottlenecks are on CPUs.

We observe that the spinning policy performs best (up to 5-20%
better than others) until the number of streams reaches the number
of cores (6 MPL), after which performance quickly deteriorates due
to CPU cycles wasted by waiting threads. The sleep method offers
better scalability but still suffers at larger MPL because of false
deadlocks (without flush pipelining, original TPC-B transactions

can have no true deadlocks). The sleep with backoff method scales
best, causing no false deadlocks.

In summary, if the number of concurrent transactions is less than
the number of cores, Dreadlocks with simple spinning minimizes
the overheads caused by sleep and mutex synchronization. How-
ever, if there are more concurrent transactions than cores, then the
sleep-backoff method ensures higher scalability with reasonable
overheads. The best choice seems a hybrid scheme, monitoring
the number of active threads (including background threads) and
automatically switching between pure-spinning and sleep-backoff
methods. Note that the switch does not have to be precise nor even
atomic because both additional sleeping and backoff have no effect
on correctness.

Comparison to traditional methods: We then evaluate the scal-
ability of the modified Dreadlocks algorithm with traditional dead-
lock detection methods, wound-wait and wait-die. Figure 6 shows
the speed-ups achieved by Dreadlocks (its throughput divided by
that of Wound-Wait and Wait-Die) and the number of deadlocks
(unit is 10k) on Niagara. The tested workload is similar to the no-
true-deadlock experiment in [12]. We run 100k transactions which
update 5 resources (tellers) in canonical order. Thus, all detected
deadlocks are false positives which slow down the workload.

Our Dreadlocks algorithm reported almost no deadlocks except
occasional false positives caused by Bloom filters. On the other
hand, both wound-wait and wait-die cause thousands of deadlocks
as the number of concurrent threads increases. As a consequence,
their throughput quickly drops about half that of Dreadlocks as
soon as the number of concurrent threads exceeds 10.

For a comparison between the Dreadlocks and timeout algorithms,
we refer readers to [12]. Generally speaking, it is hard to choose
the right timeout parameter, as this is highly workload-dependent.
An incorrect timeout parameter can result in not only degraded per-
formance but also starvation.

Deadlock resolution: Next, we evaluate algorithms to resolve
deadlocks in the context of flush pipelines. As flush pipelining was
proposed relatively recently, this is the first study to empirically
compare deadlock resolution policies for flush-pipelines.

We ran 1M modified TPC-B transactions with flush pipelining,
doing flushes after each deadlock-abort or upon completion of 100k
transactions. We did not use ELR in this experiment and used hard-
disks for logging.

Figure 7 compares the kill-short (rolls back shortest pipeline)
and kill-long (chooses longer pipeline instead) policies as well as
the policy in the original Shore-MT which rolls back the youngest
transaction (kill-young), ignoring the length of the pipeline. These
and all subsequent experiments were run on the Z600 at MPL 6.

We observe that kill-short performs better than kill-long for a
factor of 2 to 4 on hard-disk logging. Because of slow disk latency,
single-threaded execution reduces the deadlocks and the log flushes
caused by them. All policies transition to such single-threaded ex-
ecution after one pipeline dominates the lock table and prevents
other pipelines to proceed and cause deadlocks. However, the way
the two policies transition to single-threaded is very different.

After each 100k transactions (the maximum length of the pipeline),
there is a pause. This is because threads are competing with each
other to “dominate” the lock table. Kill-long takes longer than kill-
short before one thread dominates the lock table without deadlock;
kill-short quickly reaches a state of domination by a single thread
because a longer pipeline is never rolled back and easily reaches its
maximum pipeline length. The conventional kill-young behaved
similarly to kill-long because it ignores the pipeline length, caus-
ing the same problem as kill-long.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t [

k
tp

s]

Read Ratio [%]

Kill-young
Kill-short
Kill-long

Figure 7: Deadlock resolution policy.

In summary, when we use flush pipelining under high lock con-
tention, kill-short causes fewer log flushes and performs substan-
tially faster if commit-flush is the bottleneck. We observed that the
difference between policies is much less noticeable when we use
low-latency SSD for logging.

However, kill-short policy poses another problem: lower concur-
rency. Hence, in the next experiment we evaluate early lock release
(ELR) methods to improve concurrent execution.

Early lock release: Finally, we verify the overheads and bene-
fits of our early lock release (ELR) algorithms. We ran the same
workload as the previous “kill-short” experiment, enabling ELR.

Our ELR implementation in Section 5 supports both modes of
ELR; S-ELR (releases only S locks) and SX-ELR (releases both S
and X locks) without violating serializability. Shore-MT’s imple-
mentation of SX-ELR might cause dirty reads if read-only transac-
tions do not wait for log flush. Hence, we tested only S-ELR (called
“Quarks”) on Shore-MT, which does not violate serializability but
cannot release X locks.

Figure 8 shows the results on MPL 6 with HDD and SSD for
logging respectively. HDD results have fewer data points and each
point represents only 3 runs because those runs take a long time to
complete.

SX-ELR performed significantly faster than No-ELR and S-ELR
by a factor of 3 to 5 (compared between Modified). It is worth men-
tioning that because lock waits and deadlocks are only caused by
X-locks, S-only ELR does not improve throughput either in Mod-
ified or Original. As long as a pipeline leaves X locks, lock con-
tention is inevitable.

This result verifies that SX-ELR is essential to eliminate lock
contention. Also, the result is highly consistent with the prior ob-
servation made by Johnson et al [11] shown in Figure 9, which
reports speed-ups achieved by ELR with varying skew and latency
of the logging device. Our experiment used the standard Zipfian
(S=1). Hence, the speed-up of 5× in HDD and 3× in SSD we ob-
served exactly matches with their result. The difference is that our
SX-ELR is fully serializable even in the case of read-only trans-
actions. While our SX-ELR protocol ensures full serializability, it
does not force an ad hoc read-only transaction to wait unless it has
unluckily touched uncommitted data. Almost all read-only trans-
actions can go through without waits for log flush.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t [

k
tp

s]

Read Ratio [%]

Original No-ELR
Original S-ELR

Modified No-ELR
Modified S-ELR

Modified SX-ELR

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t [

k
tp

s]

Read Ratio [%]

Original No-ELR
Original S-ELR

Modified No-ELR
Modified S-ELR

Modified SX-ELR

Figure 8: Early Lock Release: logging with HDD (above) and
SSD (below). Only the modified storage engine has serializable
SX-ELR. It also uses LIL and Foster B-trees.

If we compare the performance of Modified with Original, the
difference sometimes exceeds a factor of 50. The speed-up is es-
pecially large when contention is high, for example 0% read ratio
(original TPC-B) on HDD. This is because the modified storage en-
gine’s other improvements such as LIL and Foster B-trees further
reduce the overhead and contention in locking and latching.

When all of the transactions are read-only, No-ELR performs
slightly faster because ELR checks the transaction’s lock requests
twice at commit time. However, this overhead causes only 5% dif-
ference even in such an extreme case. On the other hand, the over-
head to collect and update the tags in lock queues was negligible.

7. SUMMARY AND CONCLUSIONS
In recent years, large main memory sizes and low-latency storage

have become increasingly common. This often completely elimi-
nates the traditional database bottleneck of disk I/O. Four new bot-
tlenecks arise in this context: logging, latching, locking, and the
buffer pool. These bottlenecks are exacerbated by the rapidly in-
creasing counts of CPU cores in modern hardware.

This paper focuses on the locking bottleneck, re-defining the

Figure 9: cf. Prior Study of ELR Performance by Johnson et
al. Adopted from [11] with permission by the author.

locking module in order to exploit the performance opportunities
of modern hardware. First, we implemented and evaluated a new
design for key range locking that combines orthogonal lock modes
and fence keys to maximize concurrency among updates in B-tree
leaves. Second, our novel Lightweight Intent Locks dramatically
simplify intent-locks and non-intent-locks to improve the perfor-
mance and scalability of critical sections in the lock table. Third,
we improve the Dreadlocks algorithm for deadlock detection earlier
implemented in Shore-MT, adapting it to work with flush pipelin-
ing and to simplify deadlock resolution. Last, we improve the Early
Lock Release algorithm [11] with our tagging mechanism in the
lock manager, allowing read-only transactions to safely exit with-
out unnecessary commit delays.

Our extensive experiments demonstrate that each technique sub-
stantially improves transaction throughput. Together, our storage
manager achieves up to 50× better throughput than the original
Shore-MT. CPU profiling after these changes indicates that more
than half of CPU cycles are spent in the buffer pool and binary
searches during B-tree lookups. We are currently working on the
remaining bottlenecks. In the buffer pool, we plan to evaluate op-
timizations that reduce searching and latching in the buffer pool’s
hash table. For searching in B-trees, we will evaluate cache-conscious
page layouts, interpolation search, and large pages.

Our project aims to eliminate all four bottlenecks (see Figure 1)
on modern hardware. Our new variant of B-trees, the Foster B-
tree, eliminates the latching bottleneck. We have inherited logging
optimizations from the Shore-MT code base and have overhauled
the locking module in this paper. We are now in the process of
addressing the last bottlenecks, the buffer pool and index search.

Acknowledgments
We are very grateful to the Shore-MT team for making their code
base publically available, and in addition thank them for kindly
helping us work on Shore-MT, for letting us use their Sun Niagara,
and for giving us insightful comments on the manuscript. We are
particularly grateful to Anastasia Ailamaki, Ryan Johnson, Nancy
Hall, and Pinar Tozun, as well as Ippokratis Pandis, Danica Poro-
bic, and Manos Athanassoulis.

8. REFERENCES
[1] R. Agrawal, M. Carey, and L. McVoy. The performance of

alternative strategies for dealing with deadlocks in database
management systems. IEEE TSE, (12):1348–1363, 1987.

[2] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker,
and D. Wood. Implementation techniques for main memory
database systems. SIGMOD, pages 1–8, 1984.

[3] G. Graefe. Write-optimized B-trees. In VLDB, pages
672–683, 2004.

[4] G. Graefe. Hierarchical locking in B-tree indexes. In BTW,
pages 18–42, 2007.

[5] G. Graefe. A survey of B-tree locking techniques. ACM
TODS, 35(3), 2010.

[6] G. Graefe, H. Kimura, and H. Kuno. Foster B-trees. In ACM
TODS (to appear), 2012.

[7] J. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger.
Granularity of locks and degrees of consistency in a shared
data base. In IFIP Working Conference on Modelling in Data
Base Management Systems, pages 365–394, 1976.

[8] S. Harizopoulos, D. Abadi, S. Madden, and M. Stonebraker.
OLTP through the looking glass, and what we found there. In
SIGMOD, pages 981–992, 2008.

[9] R. Johnson, I. Pandis, and A. Ailamaki. Improving OLTP
scalability using speculative lock inheritance. PVLDB, pages
479–489, 2009.

[10] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and
B. Falsafi. Shore-MT: a scalable storage manager for the
multicore era. In EDBT, pages 24–35, 2009.

[11] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and
A. Ailamaki. Aether: A scalable approach to logging.
PVLDB, 3(1):681–692, 2010.

[12] E. Koskinen and M. Herlihy. Dreadlocks: efficient deadlock
detection. In Symposium on Parallelism in algorithms and
architectures, pages 297–303, 2008.

[13] D. B. Lomet. Key range locking strategies for improved
concurrency. In VLDB, pages 655–664, 1993.

[14] C. Mohan. ARIES/KVL: A key-value locking method for
concurrency control of multiaction transactions operating on
B-tree indexes. In VLDB, pages 392–405, 1990.

[15] C. Mohan. Commit lsn: A novel and simple method for
reducing locking and latching in transaction processing
systems. In D. McLeod, R. Sacks-Davis, and H.-J. Schek,
editors, VLDB, pages 406–418. Morgan Kaufmann, 1990.

[16] C. Mohan and F. Levine. ARIES/IM: an efficient and high
concurrency index management method using write-ahead
logging. In SIGMOD, pages 371–380, 1992.

[17] C. Mohan, B. Lindsay, and R. Obermarck. Transaction
management in the R* distributed database management
system. ACM TODS, 11(4):378–396, 1986.

[18] R. Obermarck. Distributed deadlock detection algorithm.
ACM TODS, 7(2):187–208, 1982.

[19] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. PVLDB, 3(1):928–939,
2010.

[20] I. Pandis, P. Tozun, R. Johnson, and A. Ailamaki. PLP: Page
latch-free shared-everything OLTP. PVLDB, 2011.

[21] J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey.
PALM: Parallel architecture-friendly latch-free modifications
to B+ trees on many-core processors. PVLDB, 4(11), 2011.

[22] A. Silberschatz, H. Korth, and S. Sudarshan. Database
system concepts. McGraw-Hill, 2005.

[23] E. Soisalon-Soininen and T. Ylönen. Partial strictness in
two-phase locking. ICDT’95, pages 139–147, 1995.

	Introduction
	Key Range Locking
	Prior Techniques
	Locking protocol

	Intent Locks
	Prior Techniques
	Lightweight intent lock

	Deadlocks
	Prior Techniques
	Dreadlocks technique for databases
	Deadlock resolution for flush-pipeline

	Early Lock Release
	Prior Techniques
	Anomaly of straightforward ELR
	Safe SX-ELR

	Performance Evaluation
	Environment
	Dataset and query workload
	Results

	Summary and Conclusions
	References

