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ABSTRACT
Indexed Foreign-Key Joins expose a very asymmetric ac-
cess pattern: the Foreign-Key Index is sequentially scanned
whilst the Primary-Key table is target of many quasi-random
lookups which is the dominant cost factor. To reduce the
costs of the random lookups the fact-table can be (re-) par-
titioned at runtime to increase access locality on the dimen-
sion table, and thus limit the random memory access to
inside the CPU’s cache. However, this is very hard to opti-
mize and the performance impact on recent architectures is
limited because the partitioning costs consume most of the
achievable join improvement [3].

GPGPUs on the other hand have an architecture that is
well suited for this operation: a relatively slow connection to
the large system memory and a very fast connection to the
smaller internal device memory. We show how to accelerate
Foreign-Key Joins by executing the random table lookups on
the GPU’s VRAM while sequentially streaming the Foreign-
Key-Index through the PCI-E Bus. We also experimentally
study the memory access costs on GPU and CPU to provide
estimations of the benefit of this technique.

Categories and Subject Descriptors
B.4.3 [Input/Output and Data Communications]: In-
terconnections (subsystems); H.2.4 [Database Manage-
ment]: Systems—Query Processing

General Terms
GPGPU, Query Processing, I/O Bottleneck

1. INTRODUCTION
Making efficient use of the processing power of modern

CPUs with the available bandwidth is a great challenge of
database research. On the one hand, advances in processing
speed, e.g., due to the rising number of cores, keep on out-
pacing the improvements in memory access bandwidth and
latency. On the other hand, database workloads typically
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require less computation than, say, scientific simulations or
image processing, making it a none-trivial task to exploit
the excess of compute power effectively. This problem has
been addressed from different angles.

In software, the utilization can be improved by, e.g., De-
composed Storage [4], on-the-fly (de-) compression of stored
data [24, 9] or cache-conscious query processing [16, 13].

In hardware, vendors do their best to increase the avail-
able bandwidth through more (e.g., in Intel’s Nehalem Ar-
chitecture), wider (Burst Mode) and faster (DDR) memory
channels [14]. Unfortunately, the conflict between cheap,
large and fast memory forces vendors to compromise in or-
der to efficiently support a variety of applications.

The memory of GPUs takes a slightly different approach:
it is generally smaller yet around an order of magnitude
faster in throughput than CPU memory. The peak band-
width to the internal memory of current GPUs exceeds 100
GB/s. Unfortunately, the transfer from and to the CPUs’
memory is costly: In practice, a throughput of around 4
GB/s can be achieved through the PCI-E×16 Bus. This
makes the GPU memory unattractive as the sole opera-
tive memory and raises the question: How are the avail-
able resources used most efficiently, or, to be more concrete:
how can the amount of data that is transfered through the
slow PCI-channel be minimized while still exploiting the full
speed of the fast internal memory channel? Rather than
approaching this problem with sophisticated algorithms we
carefully investigate the available hardware and use each
available component to the best of its capabilities. We
achieve this by distributing data amongst the memory struc-
tures according to the typical data access pattern.

To this end, our contributions include

• a theoretical and experimental study of the memory
access characteristics of a GPU’s internal and external
memory

• an assessment of the impact of the randomness/unclus-
teredness of data on the memory access performance,

• busting the myth of always needing many cores to max
out the GPU’s memory,

• discouraging the feasibility of clustered joins on GPGPUs.

We also introduce ideas of distributed query processing
to collaborative CPU/GPU processing in general and eval-
uated the benefits of a technique derived from Data Ware-
house Striping in particular.
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Whilst the usage of GPUs for DBMS operations has been
studied [13, 9, 11, 12], the common view on GPUs has, hith-
erto, been that of a coprocessor. As opposed to real copro-
cessors, however, (discrete) GPUs have the discussed PCI
bottleneck which results in characteristics that are much
closer to a distributed system than a processor/coprocessor
architecture. This problem has been mentioned in previ-
ous work and is tackled through two techniques: compres-
sion [9] and reflection in the cost model/optimization [12].
To the best of our knowledge, a-priori cost modeling and
appropriate data placement has not yet been used to tackle
this problem. Generally, the data access characteristics of
GPUs when accessing on- as well as off-board memory have
not received significant attention. We believe that a careful
analysis of the respective costs can improve performance of
GPGPU query processing as well as simplify the algorithms
needed to achieve good performance. Based on the results of
this study, we propose a technique that we call multi-channel
data processing : Transmitting data to the processing device
(in our case the GPU) through multiple channels, using each
available channel according to its unique properties.

The rest of this paper is organized as follows: In Sec-
tion 2 we introduce the memory architecture of GPUs and
discuss its relevant characteristics for our case. In Section 3
we provide a simple cost model for multi-channel memory
access systems that gives an idea of the expected perfor-
mance gains. We evaluate the performance improvements
of our approach in Section 4. In Section 5 we present past
and future work that may be applied in combination with
our approach and discuss its applicability to various appli-
cations. We conclude in Section 6.

2. BACKGROUND
Before exploring Multi-Channel Query Processing we in-

troduce the base technology, i.e., the memory anatomy of
CPU/GPGPU system. In this section, we discuss the op-
tions for the transfer of data from the host to the device and
the access characteristics of the internal memory.

2.1 Host to Device Data Transfer
Exchanging data between host and a device is the fun-

damental operation of any system I/O. To get a general
impression of the integration of a GPGPU device into the
host system’s memory structure, consider Figure 1. Our
Nehalem-class test system incorporates two memory chan-
nels (high end systems may have three) that are connected
to the memory controller [14]. The bandwidth of these de-
pends on the external clock frequency of the CPU but is

in the range of 8 to 10 GB/s. The Memory Controller is
connected to the I/O Hub through the QPI-bus which has
a peak bandwidth of 25.6 GB/s [15]. In practice it may be
used for other purposes like, e.g., cache-coherency amongst
CPUs as well, which may put additional load on the bus.
The I/O Hub controls the PCI-E bus and may, in theory,
transfer up to 8 GB/s (16 PCI-E transfer lanes with 500
MB/s each) to each GPU device, currently up to a limit of
18 GB/s (the Intel X58 IOH supports up to 36 PCI-E lanes).

The data access granularity between the I/O Hub and
the Memory is determined by the burst size of the Memory
which is 64 bytes for DDR3 RAM. The granularity on the
PCI-bus is generally 64 bit but incurs a large overhead per
word. The PCI controller, therefore, has the option of PCI
posting : combining several PCI adjacent (write) requests
into a single burst [23]. The maximum length of these bursts
is implementation specific. In practice, random access to the
host memory from the GPU should be avoided at all costs
and is often unsupported by the hardware.

The transfer data between the device and the CPU can
be performed in one of two ways: controlled by the De-
vice (DMA) or controlled by the CPU itself (Memory Map-
ping). Depending on the need for preprocessing (e.g. pre-
selection), either may have advantages. Unfortunately, some
vendors only support a subset of the available techniques1.
Since the host to device transfer is the limiting factor for
data intensive applications (see Sections 3 and 4.2), how-
ever, it is crucial that both methods are implemented. We
discuss the technical implementation of the transfer meth-
ods and their respective advantages in the following.

Mapping Device Memory
The ability to map device memory into the addressable
memory of a user process is an integral part of the x86 ar-
chitecture2[14]. Historically, the Northbridge took care of
all memory accesses on the “fast” connections, i.e., RAM,
AGP and PCI-E devices.

Most current CPUs come with an integrated memory con-
troller and only rely on the Northbridge for real I/O. This
architecture will be our focus. When accessing a memory ad-
dress that falls into the designated area for memory mapped
devices, the CPU sends it to the Northbridge (a.k.a. I/O
Hub) using QPI (or the AMD equivalent: HyperTransport).
For PCI-E devices, the Northbridge takes care of wrapping
the memory access into the appropriate Bus protocol and
sending it to the device. PCI posting gives Memory Mapped
Devices similar access characteristics as regular memory:
data is accessed in blocks that are similar to cache lines
for regular memory.

Direct Memory Access
Direct Memory Access (DMA) gives a device access to the
system’s main memory without involving the CPU and its
internal buses for every single transfer. DMA is controlled
by the device and can be initiated by the CPU or the de-
vice. In the earlier case, which is more interesting to us,
the CPU prepares an area of the memory for DMA (this
is sometimes called pinning of memory) and triggers the
transfer by signaling the device. In the case of PCI, the

1E.g., the ATI Stream SDK 2.4 supports neither Memory
Mapping nor non-Bulk (Device-initiated) DMA on Linux
2and most other platforms as well
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Figure 1.7 Interrelationship of Memory Domains

Figure 1.8 illustrates the standard dataflow between host (CPU) and GPU.

Figure 1.8 Dataflow between Host and GPU

There are two ways to copy data from the host to the GPU compute device 
memory:

• Implicitly by using clEnqueueMapBuffer and clEnqueueUnMapMemObject.

• Explicitly through clEnqueueReadBuffer and clEnqueueWriteBuffer 
(clEnqueueReadImage, clEnqueueWriteImage.).
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Figure 2: Memory Structure of an ATI (Evergreen)
GPGPU card (taken from [1])

device becomes the Bus-Master, requests (parts of) the pre-
pared region and issues an interrupt to the CPU once it is
done [10]. Pinning the memory can be an expensive op-
eration. Depending on the support by the hard- and soft-
ware it might involve copying the data to a contiguous area
in (kernel-)memory. Some current PCI-E devices support
scatter/gather-lists that avoid this additional copy. Regard-
less of the necessity for this copy, the Operating System
has to ensure consistency of the transferred data by flushing
the caches and preventing the paging to disk. Setting up a
DMA transfer is, thus, costly and should be done only for
large (several megabytes at least) amounts of data.

If data resides readily in main memory, we expect DMA
to perform better than Memory Mapping because it avoids
an additional pass through the CPU’s memory hierarchy.
If, however, the data has to be modified (e.g., preselected or
partitioned) it has to pass through the CPU in any case. In
this case we expect Memory Mapping to outperform DMA
because it avoids materializing the intermediates in RAM.
Unfortunately, the implementation of host to device trans-
fer, especially on “exotic” platforms (i.e., not Windows) is
often not optimally exploiting the available hardware fea-
tures, thus limiting the actual performance.

GPU Device Memory
In addition to the host memory the GPU has access to an
internal memory (also called Video RAM, VRAM, Graphics
or Device Memory). Figure 2 shows a memory architecture
diagram of an ATI Evergreen class GPU. Prominent are two
things: a) data can either be transferred into the VRAM or
read directly from the host memory using PCI-E and b) the
Level 1 and 2 Caches are read-only which obviously has some
implications on its usage.

The VRAM has a bandwidth in the range of triple-digit
GB/s but also a comparatively high latency of around 200
to 300 cycles as opposed to common CPU memory latency
of 50 to 60 cycles. This conscious design decision is mit-

igated by the high degree of parallelism: When used cor-
rectly, the computation of one thread can hide the memory
access latency of another. Correctly exploiting this paral-
lelism is, however, not trivial. To simplify the programming
of massively parallel computation devices, vendors rely on
the kernel programming model. While supporting massive
parallelism, this model comes with a number of limitations
and pitfalls. In Appendix A be provide a brief overview of
the kernel programming model and one of it’s implementa-
tions, OpenCL, for the interested reader.

3. THEORETICAL MODEL
The discussed hardware properties inspired us to the fol-

lowing approach: for a sequential access and a concurrent
random access, the operations are executed using different
memory channels, taking the characteristics of the chan-
nels into account. We call a device that has multiple mem-
ory units attached using channels with different properties a
Multi-Channel (Processing) Device. Query Processing that
takes these properties into account will be referred to as
Multi-Channel Query Processing.

In this section we analyze this approach theoretically by
estimating the costs on either hardware using a simplified
version of the Generic Cost Model for Hierarchical Memory
Systems [17]: it models only a single layer of memory and
therefore does not consider any caching effects. Even though
this limits the general applicability of the model, the case
we study generally involved tables that exceed the available
cache by far. This makes caching largely irrelevant. For
the purpose of this paper, our model aims at providing an
intuitive insight into the rationale of our approach, rather
than aiming at a most detailed and accurate prediction. The
model, as well as our evaluation is targeted towards main
memory DBMS using decomposed storage. We assume that
all data is readily available in memory and neglect any disk
I/O. Thus when mentioning to I/O in this paper, we refer
to main-memory access costs, rather than disk I/O. We also
use decomposed storage for all relations and intermediates.

The model depends on four input parameters:

Bmem/s denotes the block size of the sequential memory
channel and defines its data access granularity. This
is the size of a memory burst/cache line.

Bmem/r denotes the block size of the random memory chan-
nel and defines its data access granularity. This is the
size of a memory burst/cache line.

Bcpu denotes the size of the processed data type on the se-
quential channel. It is mainly used to calculate how
many data items are processed per cache line which de-
termines the number of random misses per sequential
miss.

Tmem/r denotes the bandwidth/throughput of the channel
that is used for random accesses.

Tmem/s denotes the bandwidth/throughput of the channel
that is used for sequential accesses.

The target measure Teff gives an estimation of the ex-
pected throughput in terms of data processed from the se-
quentially channel. Note that our model does not take the
cache capacity into account: we assume a cache miss for
every lookup/processed data item. This is, of course, not



CPU GPU (ATI) GPU (NVidia)
Type Intel® Core™ i7 860 ATI Radeon™ HD 5850 NVidia GeForce GTX 480
Memory 8G 1G 1.5G
Internal Memory Bandwidth (Tmem/r) 17GB/s 128 GB/s 177.4 GB/s
External Memory Bandwidth (Tmem/s) 17GB/s 3.5 GB/s 4 GB/s
Access Granularity (Bmem) 64B 128B 128B

Table 1: Evaluation Hardware Parameters

always the case, but becomes a problem for random accesses
to large data structures. Since our focus is processing large
dimension tables, we consider a model that takes caching
into account out of scope. To feed the model, we use the
parameters as seen in Table 1 that reflect the specifications
of our target hardware.

Modeling a Single Memory Channel
As a first intermediate, we calculate the number of bytes
that have to be read from the random access channel to
process one cache line from the sequential access channel
Beff/r using Equation (1). Beff/r is simply the number
of processed data items per sequential cache line multiplied
with the size of a random cache line.

Beff/r =
Bmem/s

Bcpu
×Bmem/r (1)

From that, we can estimate the effective throughput on
a single-channel system using Equation 2: the number of
processed sequential cache lines per second is the memory
bandwidth divided by the data needed to process the cache
line. The effective data throughput is the number of pro-
cessed sequential cache lines per second multiplied with the
size of a sequential cache line.

Teff =
Tmem

Beff/r + Bmem/s

×Bmem/s (2)

On a Nehalem System, e.g., the cache line size Bmem is
64 byte. When processing 4 byte integers (Bword = 4), we
effectively transfer Beff/r = 16 × 64 = 1024 bytes on the
random access channel per processed cache line on the se-
quential channel. Beff/r +Bmem/s is, thus, 1088. Since the
available bandwidth is two times 8.5 GB/s we can process
16 million cache lines or roughly one GB per second on the
sequential channel.

Modeling Multiple Memory Channels
Using a multi-channel system we are limited by the slower
channel. Thus, Equation (3) can be used to estimate the
costs: the throughput on the random channel is calculated
similar to Equation 2 but without including the traffic for
the sequentially accessed cache lines.

Teff = min

(
Tmem/r

Beff/r

×Bmem/r, Tmem/s

)
(3)

The ATI Radeon HD 5850 is specified with an internal
memory bandwidth of 128 GB/s and a cache line size Bmem

of 128 byte. From that we can calculate an effective through-
put that is limited to 3.5 GB/s by the sequential traversal
channel. This is more than three times the performance of
the single-channel CPU-only processor. This is our perfor-
mance target.

However, this only holds for applications with many ca-
pacitive cache misses. In the Section 5.4 we discuss potential
applications that may fit this pattern.

I/O boundness on GPUs
The I/O boundness of Database Operations on CPUs is
well researched [4, 24]. GPUs are, however, made out of
many relatively slow processing units. This changes the
balance between computation and I/O when using only a
single core. Therefore, GPUs rely on massive parallelism
to max out the memory bandwidth. Consequently, existing
work (e.g., in [8]) focuses on maximizing the processing par-
allelism, oblivious of the fact that it might not be necessary
due to I/O starvation. In the case of joins, the input data
is usually radix-partitioned and every partition processed in
one thread [8]. This allows efficient lock-, synchronization-
and replication-free parallel processing of the partitions if
the data is distributed close to uniformly. For skewed data,
radix-partitioning might fail to achieve the aspired perfor-
mance improvement due to suboptimal load balancing. It
may even decrease performance due to the clustering over-
head.

4. EXPERIMENTS
To gain detailed insight, we focus our experiments on the

very core of a foreign-key join between a large table that is
located in the host memory (or even on the host’s (flash-
) disk) and a smaller table that is located in the GPU’s
device memory. This closely resembles the case of a single
dimension Star-Join between a large fact-table and a smaller
dimension-table. We will therefore also refer to the smaller
table as dimension-table. We consider the join attribute to
be a 4 byte integer key, and assume that accesses to the
smaller table are supported by a Foreign-Key index.

We further assume that all tables are stored in decom-
posed representation [6] and only the join-index attribute of
the large table is sent to the GPU. Given that the join algo-
rithm preserves the tuple-order of the large table in the join
result, projection to more columns of the large-table can be
done efficiently on the CPU. This is similar to semi-join so-
lutions for join-processing in distributed database systems.

To evaluate the feasibility of our approach, we compare
a state of the art radix-join on a modern CPU with our
CPU/GPU hybrid implementation of a näıve implementa-
tion of an unpartitioned star-join. In this section we describe
the system configuration and present our results.

4.1 Setup
The CPU implementations of our evaluation are run on

a current mid-range Intel Nehalem Workstation. The GPU
implementations are run on an mid-range ATI card as pri-
mary platform and on an upper mid-range NVidia card for
reference. Detailed information about the hardware are dis-
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played in Table 1.
The best competing approach for star-joins is radix-joining

which works best if the fact-data is uniformly distributed.
We, therefore, only considered uniformly distributed data
and expect even better results for skewed data.

The CPU star-join is implemented using a single pass out
of place radix partitioning step. The join-phase is a single-
threaded loop. In order to efficiently exploit memory band-
width we explicitly unrolled the loop to achieve a consis-
tently high number of outstanding cache misses. Since we
are only interested in the actual join-performance, the re-
sults were directly aggregated while running the loop. We,
thus, avoided any additional I/O so we can compare pure
join-performance. In addition, we only consider Foreign-Key
joins using pre-built hash-tables. Naturally, the existence of
a Foreign-Key index on the fact-table makes any clustering
of the Dimension-Table unnecessary.

4.2 Results
Using this setup, we conducted experiments to answer

three questions: 1. Can our approach compete with a sophis-
ticated CPU-only implementation? 2. How does it scale with
an increasing dimension table size and how does it compare
to a CPU-only implementation? 3. How much parallelism is
needed to max out the GPUs internal memory bandwidth
and do the gains justify the costs for partitioning?

Radix Joins on CPUs and GPUs
We evaluated the radix join for fixed Dimension- and Fact-
table sizes. We varied the number of generated partitions
and measured the execution time of the individual steps.
Figure 3(a) shows the results which are consistent with the
expectations and the recent literature [3]: The radix join is
very sensitive to the optimal selection of the parameters and
does not perform much better than the unpartitioned join.
Even for the optimal number of partitions on our machine,
the radix-partitioned hash-join performs only 30% better
than the unpartitioned join because the expensive partition-
ing is not amortized by the improvement in the join costs.
We observed different results in favor of partitioning on dif-
ferent machines and will report them separately.

We also evaluated the join performance on the GPU and
found that the partitioning step on the GPU is even more
expensive than on the CPU (see Figure 3(c)).

Unpartitioned Foreign-Key Joins for Varying Size
Next, we implemented our hybrid CPU/GPU non-partitioned
Foreign Key Join using OpenCL [18] and ran it on the ATI
card, the Nvidia card and the i7 CPU. We varied the size
of the dimension table from 2K to 64M. On the ATI card
we also controlled if the dimension table was cached in the
private/shared caches of the GPU. This can be done by
declaring the data structure read-only vs. writable: because
the GPU’s cache is read-only, only data structures that are
explicitly declared as read-only are cached. Figure 4(a) il-
lustrates the effect of caching on the GPU. With activated
caching, we observe an overproportional increase of the costs
whenever we exceed the size of a cache. This is similar to
what has been observed on CPUs [17, 4] yet a lot less severe.
Even when disregarding the costs for the data transfer from
the host to the device, the performance only improves by a
factor of roughly 2.5. Without caching, the costs start at
a higher baseline but approach the same maximum. Fig-
ure 4(b) shows a similar behavior on the NVidia card. Fig-
ure 5 depicts our main result: the increase in the lookup
costs on the CPU outgrows the additional costs for the host
to device transfer as soon as the dimension table runs out of
cache. On our machine, the multi-channel GPU approach
outperforms the CPU for dimension tables larger than 8MB
due to heavy cache and TLB thrashing on the CPU. It also
shows that our model gives a reasonable prediction of the
join performance for large dimension tables on the GPU and
the CPU.

Foreign-Key Join with Varying Number of Threads
Figure 6 shows the impact of the level of parallelization on
the query execution time. We observe a drop of the query
costs when increasing the number of threads from one to
two. This drop in query costs is expected because one thread
can be used to partially hide the latency of the other. Be-
yond that, we don’t observe any significant improvement
in the query performance. Indeed, the query time actu-
ally increases for a high number of threads on the Nvidia
card which suggests that the thread scheduling overhead
on the Nvidia card is higher than on the ATI card. More
importantly, however, this strongly discourages investing re-
sources (in implementation as well as data structures) into
the massive parallelization. Even though the precise impact
of massive parallelization on other cases is an open question,
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this strongly suggests that more research is needed. We also
expect that a lower latency of the memory will arouse the
need for higher parallelism.

5. RELATED AND FUTURE WORK
The memory architecture of a GPU/CPU system largely

resembles that of a distributed system: two or more de-
vices that have relatively fast internal memory are connected
through a relatively slow channel cooperate to process a
query. It may, thus, be beneficial to assess the applicabil-
ity of techniques for distributed query processing at hand.
In this section we provide a very brief overview of exist-
ing techniques of distributed query processing and suitable
applications for the presented approach.

Distributed query processing faces two major questions:
how to distribute data and how to distribute processing.

5.1 Data Distribution
Classical distributed query processing (see, e.g., [21] for an

overview) usually assumes that the nodes have equal or at
least similar resources regarding processing, storage as well
as I/O performance. Under this assumption, the main chal-
lenge is to limit inter-node communication and even out data
skew. A popular paradigm to achieve this is MapReduce [7].
However, it is mainly targeted at large homogeneous clus-

ters where it provides a good means for load balancing. It
is less well suited for our, very asymmetrical, case.

Classical Database distribution schemes with the goal of
minimizing inter-node communication range from full de-
normalization [5], (clustered) partitioning [22] to (partial)
replication [2]. Due to the asymmetric capabilities of the
nodes in our case, however, we deem näıve splitting into
equally sized partitions infeasible: we need a more sophis-
ticated distribution strategy that takes the induced access
pattern into account.

We see three possible approaches to this problem: a priory
modeling/optimization, runtime monitoring/learning and man-
ual placement. The first may suffer from suboptimal place-
ments due to mispredictions and inaccuracies in the model,
the second from unnecessary data transfers due to additional
replacements. The third requires an experienced DBA with
enough knowledge to manage the technology. Even though
a good automatic Data Distribution scheme is necessary to
help adoption of this technique, we considered this out of
scope of this paper and leave it for future work. For now,
we resorted to a heuristic that is close to Data Warehouse
Striping [2].

Data Warehouse Striping [2] is a technique that is known
to work well on Star/Snowflake like schemas: dividing the
large fact table into interleaved partitions and replicating
the small dimension tables to every node. Even though,
we expect a more sophisticated distribution scheme to per-
form better for a broader range of applications, Data Ware-
house Striping provides a good heuristic for our initial ex-
periments.

This technique does, however, involve the replication of
all dimension tables to all participating devices. For large
dimension tables this may become an infeasible solution and
more sophisticated techniques that take the available re-
sources into account are called for.

5.2 Query Distribution
Since data is not exclusively stored but merely replicated

on the GPU, query optimization has another degree of free-
dom. Some operators may be evaluated on either the GPU
or the CPU (or even both). This degree of freedom, however,
calls for query optimizers to take it into account. Since most
DBMSs already come with a cost model and query opti-
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Figure 6: Impact of Level of Parallelization on Foreign-Key Join Performance

mizer, it is reasonable to leverage and extend the cost model
to incorporate the additional factors: GPU processing and
I/O costs as well as the costs for the transfer. Prior work [8]
includes such a cost model which is also used to improve
performance. However, it is only used to decide where to
execute each operator in isolation and has does distinguish
different kinds of memory. A strategic optimization of the
query plan to, e.g., favor one device over another to avoid
the transmission costs for the next operator is called for.
The threshold for the size of the dimension-table at which
an evaluation on the GPU is sensible could be determined
using such a model.

5.3 Compiling Queries to Machine Instruc-
tions

GPUs are, in general, programmed using code that is com-
piled and transferred to the device at runtime. This gives the
option of generating code that is custom made for the query
at hand yet induces additional costs for compilation. The
impact of compiling a query down to Machine Level Instruc-
tions on CPUs has received some attention lately [19]. Using
Machine Level Instructions directly removes interpretation
overhead and allows a very efficient exploitation of CPU as
well as operator pipelining. Since all GPU programs are
created and transferred to the device at runtime, we may
see similar gains. However, the balance between increased
costs for query compilation and and the performance gains
at runtime have not been explored yet.

5.4 Applications
The idea of multiple I/O channels is, in general, applica-

ble to most database operations. The asymmetric properties
of the different channels, however, make some operations a
better fit for the approach than others. Good candidates are
all operations that involve concurrent random and sequen-
tial memory accesses on large datasets. We identified three
major cases where an operation of that class occurs.

Dictionary Lookups
Somewhat similar is the application for dictionary compressed
data. If the dictionary is larger than the cache the lookups

cause a lot of thrashing. The access to the dictionary may,
thus, create a bottleneck for the decompression. This could
be alleviated by sacrificing fast sequential memory access on
the compressed relation in favor of fast access to the dictio-
nary.

Out of Order Tuple Reconstruction
A need for faster random access may also arise when recon-
structing tuples in a column store. Whilst this operation
causes sequential access for in-order reconstruction, the ac-
cess pattern may change if executed after a join or group by.
Especially in the case of a join (which may yield an increase
of the data volume), the attribute that is to be reconstructed
might fit in the GPU memory whilst the join product does
not.

Multidimensional OLAP
Data Warehouses are usually organized in a Star or Snowflake
Schema. These schemas exhibit a data distribution amongst
the tables that fits the idea of Multi-Channel Query Pro-
cessing very well: few, large, volatile fact tables that are
normally accessed sequentially and many, small, quasi static
dimension tables which are commonly accessed randomly us-
ing a Foreign-Key relation. Most multidimensional OLAP
queries involve both kinds of tables which makes them a
good candidate for the access through multiple channels.
For now, we only consider single-way joins which limits the
applicability to one-dimensional queries. A generalization
for multi-way joins is target for future work.

6. CONCLUSION
I/O-Bound Applications like Database Management Sys-

tems have to scrape together bandwidth wherever they can.
Especially repetitive random accesses to datasets that ex-
ceed the cache can put significant load on the memory bus
due to heavy cache thrashing.

We investigated a promising technique to increase the ef-
fective processing bandwidth in order to improve query eval-
uation performance in throughput and latency. To address
the challenges that are introduced with this new technique
we have introduced techniques of distributed query process-



ing to the realm of hybrid GPU/CPU processing. We ap-
plied a technique based on Data Warehouse Striping and to
the case of Foreign-Key Joins. The results show a significant
decrease of the query evaluation time. This encourages us
to continue research in this field which still holds a number
of challenges in store. We identified a number of potential
applications for our approach as well as related techniques
that may help to increase the breadth of applications that
profit from the approach.
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APPENDIX
A. GPGPU PROGRAMMING

Programming the high number of cores of a GPU in an
imperative language with explicit multithreading is a chal-
lenging task. To simplify GPU programming, a number of
competing technologies based on the kernel programming
model have been introduced. The most prominent ones are:
DirectCompute, CUDA [20] and OpenCL [18]. Whilst the
earlier two are proprietary technologies, the later is an open
standard that is supported by many hardware vendors on
all major software platforms. The supported hardware does
not just include GPUs, but CPUs as well: Intel and AMD
provide implementations for their CPUs, AMD and NVidia
for GPUs. Apple, one of the driving forces behind OpenCL,
ships their current OS version with an OpenCL implemen-
tation for both GPUs and CPUs. The portability does,
however, come at a price: to support a variety of devices,
OpenCL resorts to the least common denominator, which
radically limits the programming model. In addition, the
performance characteristics of the various implementations
vary greatly. In this section, we discuss basic concepts of
OpenCL and the relevant limitations of the programming
model.

The Kernel Programming Model
The most important concept in OpenCL is the Kernel: a
function that is defined by its (OpenCL) C-code, compiled
at runtime on the Host, transferred in binary representa-
tion and executed on the device. The Kernel is then sched-
uled with a specified problem size (essentially the number
of times the kernel is run) to operate on a number of data
buffers.

Static Memory Allocation
The static memory allocation becomes a problem for opera-
tions for which the size of the output cannot be determined
a priory. For selections the problem is somewhat manage-
able because the output is always smaller than the input,
which gives a reasonable upper bound for the output size.
The problem is harder for joins, where the upper bound,
i.e., the product of the joined relations, can be large yet is
rarely met. He et al. [13] propose to execute a join twice:
once to estimate the size of the output and a second time
to produce the output. Should the size of the output ex-
ceed the available storage, the authors propose to evaluate
the joins in multiple passes which, obviously, increases the
computational effort.

Even though the lack of memory reallocation is a prob-
lem it also has a significant performance advantage. Memory
can be addressed using physical addresses, which eliminates
the need for costly translation from virtual to physical ad-

dresses. In particular, this speeds up random memory ac-
cesses significantly. We will evaluate the random memory
access performance in Section 4.

A Priory Fixed Problem Size
Similar to input and output memory size, the problem size
has to be specified up front. This is done by dispatching the
kernel (the compiled processing function) for execution on
the device with the problem size as a parameter (e.g., n).
The kernel is then executed exactly n times. Each invocation
has access to an id that can be used to determine which
piece of the work to do. A workaround is to use a single
complex thread to do all the work. Naturally, reducing the
degree of parallelism on a GPU has a negative impact on
performance: firstly, only a single core of a single processor
can be active which may not be enough to max out the
memory bandwidth and secondly there is no opportunity to
hide stalls in a core by scheduling a different task. We will
evaluate the performance impact of the degree of parallelism
in Section 4.2.

Maximum Allocation/Mapping Size
Given the maximum size of the internal GPU memory, most
GPUs use 32-bit (or even smaller) addresses for internal
as well as external memory. To take it into account, the
OpenCL standard defines a maximum size for a single allo-
cation. The size is implementation specific and at least 128
MB. Whilst this ensures compatibility to lower-end cards,
it poses challenges when using the GPU for larger datasets:
the data has to be sliced up into several buffers. Even though
this is not a fundamental problem, it complicates the imple-
mentation and may induce buffer management overhead at
runtime.

Single Instruction Multiple Threads
Whilst not strictly a problem of OpenCL, a GPU hardware
peculiarity is the notion of SIMT (Single Instruction Multi-
ple Threads). SIMT is the source of a common misconcep-
tion of GPU programming: even though a GPU supports
many parallel threads, these are not independent as they are
on a CPU. All cores of a processor execute the same instruc-
tion at any given cycle. An ATI Evergreen-class GPU, e.g,
has 16 (SIMD-)cores which execute every instruction for at
least 4 cycles. Thus, every scheduled instruction is executed
at least 64 times (usually on different data items). A set of
threads coupled like that is called a Work Group. A work
group of less than 64 items underutilizes the GPU’s compu-
tation units. This also has a severe impact on branching: if
one branch in a Work Group diverges from the others the
branches are serialized and executed on all cores. The cores
that execute a branch involuntarily simply do not write the
results of their operations.
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