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ABSTRACT
Flash-based solid state disks (SSDs) are beginning to supplant
conventional rotating disks for performance-critical data in myriad
DBMS applications, including decision support systems. Though
SSDs provide the same block-oriented storage abstraction as
conventional disks, their performance characteristics differ dras-
tically. Whereas SSDs provide relatively modest improvements
in sequential transfer rates (e.g., perhaps 2× improvement), they
can provide over 100× improvement for random reads, resulting
in similar sustained transfer rates regardless of the access pattern.
Conventional query optimizers assume a storage cost model where
sequential IOs are far less costly than random IOs, and select
access paths and join algorithms based on this assumption. Given
the drastic change in SSD performance characteristics, intuition
suggests that optimizer cost models must be updated (e.g., to prefer
non-clustered index scans more frequently).

Surprisingly, our empirical investigation using a commercial
DBMS finds it is not necessary to adjust query optimization when
shifting relations from disk to flash—an SSD-oblivious optimizer
generally makes effective choices. We make two main observa-
tions. First, we demonstrate both empirically and analytically
that the range of selectivities for which an unclustered index scan
can benefit from SSDs’ fast random reads is so narrow that it
is inconsequential in practice. Second, our measurements show
that the performance variations across alternative join algorithms
on SSDs are generally smaller than the corresponding variation
on disks and are dwarfed by the 5× to 6× performance boost of
shifting data from disk to SSD. We conclude that existing query
optimizers largely make correct decisions even when treating all
storage devices as conventional disks, and the small and incon-
sistent performance gains available by making query optimizers
SSD-aware are not worth the effort.

1. INTRODUCTION
For decades, database management systems (DBMSs) have used

rotating magnetic disks to provide durable storage. Though inex-
pensive, disks are slow, particularly for non-sequential access pat-
terns due to high seek latencies. With the rapid improvements in
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storage density and drop in price of Flash-based Solid State Disks
(SSDs), DBMS administrators are beginning to supplant conven-
tional rotating disks with SSDs for performance-critical data in
myriad DBMS applications. Though SSDs are several factors more
expensive than conventional disks (in terms of $ per GB), they pro-
vide modest (2×) improvements in sequential IO and drastic (over
100×) improvements for random IO, closing the gap between these
access patterns.

Many components of modern DBMSs have been designed to
work around the adverse performance characteristics of disks (e.g.,
page-based buffer pool management, B-tree indexes, advanced
join algorithms, query optimization to avoid non-sequential IO,
prefetching, and aggressive IO request reordering). As SSDs
present substantially different performance trade-offs, over the
past few years, researchers have begun to examine how SSDs
should be best deployed for a variety of storage applications [3,
4], including DBMSs [7, 14, 8, 1, 13]. A common theme among
these studies is to leverage the better random IO performance of
SSDs through radical redesigns of index structures [14, 8] and data
layouts [1, 13]. However, we note that, even within the confines
of conventional storage management and indexing schemes in
commercial DBMSs, there may be substantial opportunity to
improve query optimization by making it SSD-aware.

In this study, we examine the implications that moving a
database from disk to Flash SSDs will have for query optimization
in conventional commercial DBMSs. We focus on optimization of
read-only queries (e.g., as are common in decision support work-
loads) as these operations are less sensitive to the SSD adoption
barriers identified in prior work, such as poor SSD write/erase
performance [4] and write endurance [10]. Conventional query
optimizers assume a storage cost model where sequential IOs are
far less costly than random IOs, and select access paths and join
algorithms based on this assumption. The recent literature [1]
suggests that on SSDs, optimizers should instead favor access
paths using non-clustered indexes more frequently. Furthermore,
as SSDs change the relative costs of computation, sequential, and
random IO, the relative performance of alternative join algorithms
should be re-examined, and optimizer cost models updated.

Contrary to our initial expectations, our empirical investigation
using a commercial DBMS finds it is not necessary to make any
adjustments to the query optimizer when moving data from disk
to Flash—an SSD-oblivious optimizer generally makes effective
choices. We demonstrate this result, and explore why it is the case,
in two steps.

First, we analyze the performance of scan operators. Classic
rules of thumb suggest that non-clustered index scans are prefer-
able at low selectivity (e.g., below 10%), whereas a relation scan
is faster at high selectivity, because it can leverage sequential IOs.



Intuition suggests that the optimizer should prefer index scans at
much higher selectivities on SSDs. We demonstrate analytically
and empirically that this intuition is false—the range of selectivi-
ties for which an index scan operation can benefit from SSDs’ fast
random reads is so narrow that it is inconsequential in practice.

Second, we measure the relative performance of hybrid hash and
sort-merge joins on disk and Flash. Our results indicate that the per-
formance variation between the join algorithms is typically smaller
(and often negligible) on Flash, and is dwarfed by the 5× to 6× per-
formance boost of shifting data from disk to SSD. We conjecture
that because commercial DBMSs have been so heavily optimized to
hide the long access latencies of disks (e.g., through sophisticated
prefetching and buffering), they are largely insensitive to the la-
tency improvements available on SSDs. Overall, we conclude that
the small and inconsistent performance gains available by making
query optimizers SSD-aware are not worth the effort.

While our results are specific to existing DBMSs we believe
our conclusions will extend to many Flash-optimized database
algorithms. As this paper focuses on the performance of com-
mercial DBMSs we omit discussion of algorithms not included in
our DBMS and leave it as future work to implement and compare
Flash-specific improvements.

The remainder of this paper is organized as follows. In Section 2,
we provide brief background on Flash SSD operating principles
and performance characteristics relevant to our analysis. We then
outline the widely-accepted intuition that leads us to the (incorrect)
belief that query optimization should be SSD-aware in Section 3.
The remainder of our study refutes this expectation both empiri-
cally and (in the case of scans) analytically. We discuss our mea-
surement approach in Section 4 and discuss scans in Section 5 and
joins in Section 6. We survey related work in Section 7 and con-
clude in Section 9.

2. BACKGROUND
Driven by the popularity of mobile devices, Flash memory has

quickly improved in both storage density and cost to the point
where it has become a viable alternative for durable storage even in
enterprise-class systems. Unlike conventional rotating hard disks,
which store data using magnetic materials, Flash stores charge on
a floating-gate transistor, forming a memory cell. These transistors
are arranged in arrays resembling NAND logic gates, after which
the “NAND Flash” technology is named. This layout gives NAND
Flash a high storage density relative to other memory technologies.
Though dense, the layout sacrifices byte addressability and some
read latency—an entire array (a.k.a. page, typically 2KB to 4KB)
must be read in a single operation—making NAND Flash more
appropriate for block-oriented IO than as a direct replacement for
RAM.

One of the difficulties of Flash devices is that a cell can be more
easily programmed (by adding electrons to the floating gate) than
erased (removing these electrons). Erase operations require both
greater energy and latency, and typically can be applied only at
coarse granularity (e.g., over blocks of 128KB to 512KB). More-
over, repeated erase operations cause the Flash cell to wear out over
time, limiting the maximum lifetime of the cell (e.g., to 105 to 106

writes [10]). Recent Flash devices further increase storage density
by using several distinct charge values to represent multiple bits in a
single cell at the cost of slower accesses and even shorter lifetimes.
In this study, we focus on scan and join operations, which incur
few writes (writes arise only due to the use of temporary storage
during sort and hash joins). Hence, the performance and endurance
challenges of writing to Flash are orthogonal to our study.

Disk Flash

Model WD VelociRaptor 10Krpm OCZ RevoDrive
Capacity 300gb 120gb

Price $164 $300
Random Read 10ms 90µs

Seq. Read 120mb/s 190mb/s

Table 1: Disk Characteristics

A Flash-based SSD wraps an array of underlying Flash memory
chips with a controller that manages capacity allocation, mapping,
and wear leveling across the individual Flash devices. The con-
troller mimics the interface of a conventional (e.g., SATA) hard
drive, allowing Flash SSDs to be drop-in replacements for conven-
tional disks.

2.1 Flash Performance.
As previously noted, Flash SSDs provide substantially better per-

formance than disks, particularly for random reads, but at higher
cost. Table 1 lists specifications of a typical Flash SSD as compared
to a 10,000 RPM hard drive; these particular devices are used in the
experiments we describe later. Though neither of these devices are
the highest-performing available today, they are representative of
the mid-range of their respective markets. The latency for a ran-
dom read is over 100× better on the SSD than on the disk, while
the sequential read bandwidth is 1.6× better. Unlike disks, where
each random read incurs mechanical delays (disk head seek and
rotational delays), on SSDs, a random read is nearly as fast as a
sequential read. Flash memory arrays, disk interfaces, and the op-
erating system all contribute to Flash read latency. Typical SSDs
read in about 100 µs.

3. A (FALSE) CASE FOR SSD-AWARENESS
As noted in Section 1, both prior work [1, 13] and our own ini-

tial expectations suggested that adding SSD-awareness to the query
optimizer of a commercial DBMS should allow it to arrive at better
query plans and improve performance. Though we later experi-
mentally refute these arguments, we begin by explaining the chain
of reasoning that lead us to investigate SSD-aware query optimiza-
tion.

3.1 Scans
Whenever a query accesses a table, the query optimizer must

choose an access path for that table. Work on access path selec-
tion dates back to the late 1970s [11]. There are two classic scan
operators implemented by nearly all commercial DBMS systems.
When no indexes are available, the only choice is to perform a re-
lation scan, where all data pages in the table are read from disk and
scanned tuple-by-tuple to select relevant tuples. When a relevant
index is available, the DBMS may instead choose to perform an in-
dex scan, where the execution engine traverses the relevant portion
of the index and fetches only pages containing relevant tuples as
needed.

For clustered indexes, an index scan is nearly always the pre-
ferred access path, regardless of the underlying storage device. For
non-clustered indexes, whether the optimizer should choose a re-
lation scan or index scan depends on the selectivity of the query;
relation scans have roughly constant cost regardless of selectivity,
whereas index scan costs grow approximately linearly with selec-
tivity. When selectivity is low, the index scan provides greater per-
formance because it minimizes the total amount of data that must be



transferred from disk. However, as selectivity increases, the fixed-
cost relation scan becomes faster. Though the relation scan reads
the entire table, it can do so using sequential rather than random
IO, leveraging the better sequential IO performance of rotating hard
disks. A classic rule of thumb for access path selection is to choose
a relation scan once selectivity exceeds ten percent [9]. (We show
later that this rule of thumb is flawed even for disk).

As noted in the literature [1], we expect that the break-even point
between index and relation scans will occur at a substantially higher
selectivity on SSDs than on disk, because the performance gap be-
tween sequential and random IO is much smaller. This observation
in turn implies that the query optimizer must be aware of the per-
formance characteristics of the storage device to choose the correct
access path, and hence, must be SSD-aware.

Many commercial databases (including the one used in our
study) implement a third, hybrid scan operator, which we call
the rowid-sort scan. In this scan operator, the unclustered index
is scanned to identify relevant tuples. However, rather than
immediately fetching the underlying data pages, the rowid of each
tuple is stored in a temporary table, which is then sorted at the end
of the index scan. Then, the pages identified in the temporary table
are fetched in order, and relevant tuples are returned from the page.

The rowid-sort scan has the advantage that each data page will
be fetched from disk only once, even if multiple relevant tuples
are located on the page. (Pages might be fetched and evicted
from the buffer pool multiple times in a conventional index scan.)
Furthermore, because data pages are read in order, disk seeks
are minimized, and the scan is highly amenable to aggressive
prefetching. Thus, the rowid-sort scan can achieve performance
approaching that of sequential IO on conventional disks. However,
the scan incurs some overhead due to the sort operation, and
cannot be pipelined. Rowid-sort scan is the optimal access path
for intermediate selectivities. On an SSD, we expect the range
of selectivities in which rowid-sort scan is optimal to narrow—
because random IOs are so much less costly on SSD, avoiding the
sort operation may outweigh the savings from fetching a handful
of pages more than once.

3.2 Joins
One of the most important decisions a query optimizer must

make is to choose an appropriate join algorithm for a given query.
The development of join algorithms and optimization strategies
dates back over 30 years [11, 12]. Most commercial DBMS sys-
tems implement variants of at least three join algorithms: nested-
loop join, sort-merge join, and hybrid hash join. At a high level,
the nested-loop join iterates over the inner relation for each tuple of
the outer relation; the sort-merge join sorts both relations and then
performs concurrent scans of the sorted results; and the hybrid hash
join forms in-memory hash tables of partitions of the inner relation
and then probes these with tuples from the outer relation.

The relative performance of these algorithms depends on a com-
plex interplay of memory capacity, relation sizes, and the relative
costs of random and sequential IOs. One example performance
model that captures this interplay was proposed by Haas and co-
authors [6]. Their model estimates the number disk seeks and the
size of each data transfer and weights each by a cost based on as-
sumed characteristics of the IO device. The model further identifies
the optimal buffering strategy for the various phases of each join al-
gorithm. As seek and random/sequential transfer times are central
parameters of this model, the break-even points (in terms of inner
and outer relation sizes) between the various join algorithms shift
as a function of disk vs. SSD performance characteristics. Our
testing indicated that this particular model was not accurate in ab-

solute terms in predicting performance for the commercial DBMS
we study (which is unsurprising, since we have no reason to expect
that our DBMS uses the buffering strategy and precise join imple-
mentations outlined by Haas). Nonetheless, the intuition underly-
ing the model provides significant evidence that query optimizers
should, at the very least, require updated constants to choose join
algorithms well for SSDs.

4. METHODOLOGY
The objective of our empirical study is to contrast the perfor-

mance of alternative scan and join algorithms for the same queries
to discover whether the optimal choice of access path or join algo-
rithm differs between SSDs and conventional disks. For either stor-
age device, the optimal access path depends on the selectivity of
the selection predicate(s). The optimal join algorithm depends on
several factors: the sizes of the inner and outer relations, the selec-
tivity and projectivity of the query, the availability of indexes, and
the available memory capacity. Our goal is to determine whether
the regions of the parameter space where one algorithm should be
preferred over another differ substantially between SSD and disk
because of the much better random read performance of the SSD.
In other words, we are trying to discover empirically cases where
an access path or join algorithm that is an appropriate choice for
disk results in substantially sub-optimal performance on an SSD,
suggesting that the optimizer must be SSD-aware.

We carry out our empirical investigation using IBM DB2 Enter-
prise Server Edition version 9.7. Our experiments use the Wiscon-
sin Benchmark schema [2] to provide a simple, well-documented
dataset on which to perform scans and joins. Though this bench-
mark does not represent a particular real-world application, mod-
eling a full application is not our intent. Rather, the Wisconsin
Benchmark’s uniformly distributed fields allows us to control pre-
cisely the selectivity of each query. Whereas real world queries are
more complicated than the simple scans and joins we study, these
simple microbenchmarks reveal the underlying differences between
the storage devices and scan/join algorithms most clearly. We in-
clude an aggregate in all queries to avoid materializing output ta-
bles as we are primarily interested in isolating other database op-
erations. We run queries on a Pentium Core Duo with 2GB main
memory, a 7200 RPM root disk drive, and the conventional and
SSD database disks described in Table 1. Both the hard disk and
SSD were new at the beginning of our experiments. While other
work has shown that SSD performance may degrade over the life-
time of the device we did not observe any change in performance.

Note that we are not concerned with the optimization decisions
that DB2 presently makes for either disk or SSD; rather, we are
seeking to determine the ground truth of which algorithm a correct
optimizer should prefer for each storage device. We use DB2’s
optimization profiles to explicitly set the query plan for each query.

5. SCAN ANALYSIS
We now turn to our empirical and analytic study of scan op-

erators. We demonstrate that although the expectations outlined
in Section 3 are correct in principle, the range of selectivities for
which an index scan operation can benefit from SSDs’ fast random
reads is so narrow that it is inconsequential in practice.

Empirical Results. We compare the measured performance of
the different scan operators as a function of selectivity on SSD
and disk. Our objective is to find the break-even points where the
optimal scan operator shifts from index scan to rowid-sort scan and
finally to relation scan on each device. We issue queries for ranges
of tuples using a uniformly distributed integer field on a table with
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Figure 1: Scan operator performance on Disk. Relation scan outperforms the alternatives at selectivities above 4%, while index scan
is optimal only for vanishingly small selectivities (e.g., single-tuple queries). Best fit curves drawn for convenience.
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Figure 2: Scan operator performance on Flash SSD. Though both break-even points shift as our intuition suggests, the selectivities
where the optimal decision differs between Disk and SSD are so narrow that the difference is inconsequential in practice. Best fit
curves drawn for convenience.
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Figure 3: Index scans touch the majority of pages even at low selectivities.

10 million rows, or roughly 2 GB. We use a pipelined aggregation
function to ensure that no output table is materialized.

Figures 1 and 2 report scan runtimes on disk and Flash SSD, re-
spectively. The figures show the measured runtime of each scan
(in seconds); lower is better. Recall from Section 3 that classic
rules of thumb suggest that, on disk, the break-even point between
index and relation scan should occur near 10% selectivity, and in-
tuition suggests an even higher break-even point for SSD. Clearly,
the conventional wisdom is flawed even for rotating disks; relation
scan dominates above selectivities of just 4% (the trends shown in
the figure continue to the right). Indeed, our results indicate that
even DB2’s query optimizer is erroneously choosing to perform
index scans at selectivities well below 0.55% where both relation
scan and rowid-sort scan still perform substantially better. In the in-
termediate range from about 0.1% to 4% selectivity the rowid-sort
scan performs best.

However, what is more important for our analysis is to compare
the locations of the break-even points across SSD and disk. Both
crossover points shift in the directions we expect. The slope of
the index scan curve is considerably shallower, and the break-even
with the relation scan has shifted above 0.5% selectivity. Further-
more, the range in which rowid-sort scan is optimal is narrower.
Nevertheless, the key take-away is that the range of selectivities for
which the optimal scan differs across SSD and Disk is vanishingly
small. Hence, it is unnecessary for the optimizer to be SSD-aware
to choose the correct scan operator.

Whereas these measurements demonstrate our main result, they
do not explain why index scans fail to leverage the random access
advantage of Flash. We turn to this question next.

Analytic Results. Our results show that index scan underper-
forms at selectivities far below what the classic 10% rule of thumb
suggests. The flaw in the conventional wisdom is that, when there
are many tuples per page, the vast majority of pages need to be

retrieved even if only a few tuples are accessed. (If we construe
the 10% rule as applying to page- rather than tuple-selectivity, the
guideline is more reasonable). Yue et al. provide an analytical for-
mula for the expected number of pages retrieved given the size of
the table, tuples per page, and selectivity [15], assuming tuples are
randomly distributed among pages. Based on this formula, Figure 3
shows the expected percentage of pages retrieved as a function of
query selectivity and tuples per page. When a page contains only
a single tuple, clearly, the number of tuples and pages accessed are
equal. However, as the number of tuples per page increases, the ex-
pectation on the number of pages that must be retrieved quickly ap-
proaches 100% even at small selectivities. As a point of reference,
given a 4kb page size and neglecting page headers, the Wisconsin
Benchmark stores 19 tuples per page while TPC-H’s Lineitem and
Orders tables store 29 and 30 tuples per page, respectively.

The implication of this result is that, for typical tuple sizes, the
vast majority of a relation must be read even if the selectivity is but
a few percent. Hence, with the exception of single-tuple lookups,
there are few real-world scenarios where scan performance is im-
proved by better random access latency under conventional storage
managers that access data in large blocks. To benefit from low ac-
cess latency, future devices will need to provide random access at
tuple (rather than page) granularity. Until we have such devices,
relation and rowid-sort scans will dominate and IO bandwidth will
be the primary determinant of scan performance.

As a final note, many workloads other than DSS may benefit
from the fast random IOs of SSDs. In particular, workloads that
perform frequent queries for a few tuples, such as transaction pro-
cessing workloads, will benefit from faster index lookup and low
random access latency.

6. JOIN ANALYSIS
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Figure 4: Join runtimes on Flash SSD and Disk, normalized for each join to the runtime of sort-merge on disk. Though there is
significant variability in join algorithm performance on disk, performance variability on SSD is dwarfed by the 6× performance
advantage of moving data from disk to SSD.

Selectivity Table Sizes Disk Flash SSD

Sort-merge Hybrid hash Sort-merge Hybrid hash

4% 1.9 x 1.9 GB 187 202 40 34
3.9 x 3.9 GB 358 451 80 72
3.9 x 6.8 GB 487 574 103 93
6.8 x 6.8 GB 649 795 142 140
6.8 x 9.7 GB 816 997 166 166
9.7 x 9.7 GB 1084 1189 202 183

27% 1.9 x 1.9 GB 236 355 48 48
3.9 x 3.9 GB 751 662 97 101
3.9 x 6.8 GB 947 781 125 122
6.8 x 6.8 GB 1415 1182 174 173
6.8 x 9.7 GB 1581 1298 199 199
9.7 x 9.7 GB 2081 1955 250 634

Table 2: Join runtimes in seconds. Variability in join runtimes is far lower on Flash SSD than on Disk.



We next study the variability in join performance across disk
and Flash SSD. Again, our objective is to identify cases where the
optimal join algorithm for disk consistently results in grossly sub-
optimal performance on Flash SSD. Such scenarios imply that it is
important for the optimizer to be SSD aware.

DB2 implements nested loop, sort-merge, and hybrid hash join
operators. However, DB2 does not support a block nested loop
join; its nested loop join performs the join tuple-by-tuple instead
of prefetching pages or other blocks, relying on indexes to pro-
vide high performance. Hence, unless the join can be performed
in memory, the nested loop grossly underperforms the other two
algorithms for ad-hoc queries regardless of storage device and will
not be selected by the query optimizer unless it is the only alterna-
tive (e.g., for inequality joins). We therefore restrict our study to a
comparison of sort-merge and hybrid hash joins.

When a clustered index exists for a particular scan or join this
index should almost always be used, regardless of the nature of
the storage device. Hence, we do not include clustered indexes in
our analysis. Furthermore, we evaluate only ad hoc joins (joins
without indexes or “where” clauses). When indexes are available,
the choice of whether or not to use the index is analogous to the
choice of which scan operator to use for a simple select query,
which is covered by our analysis of scans.

Because of the complexity of the interplay between available
memory capacity and relation sizes for join optimization [6], we do
not have a specific expectation that one join algorithm will univer-
sally outperform another on Flash SSD as opposed to disk. Rather,
we perform a cross-product of experiments over a wide spectrum of
relation sizes and output projectivities using the Wisconsin Bench-
mark database. Haas’s model demonstrates the importance of the
relative sizes of input relations and main memory capacity on join
performance; hence we explore a spectrum from joins that are only
slightly larger than available memory (joining two 1.9GB tables)
to those that are an order of magnitude larger (joining two 9.7GB
tables). We vary projectivity because we have discovered empir-
ically that it impacts significantly the optimal join algorithm on
disk, as it has a strong influence on partition size in hybrid hash
joins. We perform queries with two projectivities: approximately
5% (achieved by selecting all the integer fields in the Wisconsin
Benchmark schema), and approximately 25% (selecting an integer
field and one of the three strings in the schema). In all experiments,
we perform an equijoin on an integer field, and use an aggregation
operator to avoid materializing the output.

We report results in graphical form in Figure 4 and absolute run-
times in Table 2. In Figure 4, each group of bars shows the relative
performance of sort-merge and hybrid hash joins on disk (darker
bars) and Flash SSD (lighter bars), normalized to sort-merge per-
formance on disk. Lower bars indicate higher performance. We
provide the same data in tabular form to illustrate the runtime scal-
ing trends with respect to relation size, which are obscured by the
normalization in the graph.

Two critical results are immediately apparent from the graph.
First, Flash SSDs typically outperform disk by 5× to 6× regardless
of join algorithm, a margin that is substantially higher than the gap
in sequential IO bandwidth, but far smaller than the gap in random
IO bandwidth (see Table 1). Hence, though both join algorithms
benefit from the improved random IO performance of SSDs, the
benefit is muted compared to the 100× device-level potential. Sec-
ond, we note that, whereas there is significant performance vari-
ability between the join algorithms on disk (typically over 20%),
with the exception of a single outlier, the variability is far smaller
on Flash SSD (often less than 1%). From these results, we draw
our central conclusion: although important on disk, the choice of

sort-merge vs. hybrid hash join on SSD leads to inconsequential
performance differences relative to the drastic speedup of shifting
data from disk to Flash. Hence, we see no compelling reason to
make the query optimizer SSD-aware; the choice it makes assum-
ing the performance characteristics of a disk will yield near-optimal
performance on SSD.

We highlight two notable outliers in our results. On disk, the
best join algorithm is strongly correlated to query projectivity with
the exception of the 1.9GB × 1.9GB join at 27% projectivity. Be-
cause the required hash table size for this join is close to the main
memory capacity, we conjecture that this performance aberration
arises due to DB2 selecting poor partition sizes for the join. Sec-
ond, on Flash, we observe a large performance difference (over 2×)
between sort-merge and hybrid hash join for our largest test case,
a 9.7GB × 9.7GB join at 27% projectivity. For this query, we ob-
serve a long cpu-bound period with negligible IO at the end of the
hybrid hash join that does not occur for any of the other hash joins.
Hence, we conclude that this performance aberration is unrelated to
the type of storage device, and may have arisen due to the methods
we must employ to coax the optimizer to choose this join algorithm.
In any event, we do not believe either of these outliers outweigh our
broader conclusion that there is no particular need for the query op-
timizer to be SSD aware.

7. RELATED WORK
Previous work studying the applicability of Flash memory in

DBMS applications has focused on characterizing Flash, bench-
marking specific database operations on Flash, and designing new
layouts, data structures, and algorithms for use with Flash.

Both Bouganim et al. and Chen et al. benchmark the perfor-
mance of Flash for various IO access patterns [3, 4]. Bouganim
introduces the uFLIP micro-benchmarks and tests their per-
formance on several devices. Chen introduces another set of
micro-benchmarks, concluding that poor random write perfor-
mance poses a significant barrier to replacing conventional hard
disks with Flash SSDs. While these micro-benchmarks are instruc-
tive for understanding database performance, we focus specifically
on the performance of existing scan and join operators on SSD
and disk. Others have also benchmarked Flash’s performance
within the context of DBMS systems. Lee et al. investigate the
performance of specific database operations on Flash, including
multiversion concurrency control (MVCC), external sort, and
hashes [7]. Similar to our study, Do et al. benchmark ad hoc
joins, testing the effects of buffer pool size and page size on
performance for both disk and Flash [5]. Although related to our
study, neither of these works look at the specific performance
differences between disk and Flash for scans and joins and how
this might impact query optimization.

Whereas the above works (and our own study) focus on measur-
ing the performance of existing databases and devices, others look
ahead to redesign DBMS systems in light of the characteristics of
Flash. Yin et al. and Li et al. present new index structures, fo-
cusing on maintaining performance while using sequential writes
to update the index [14, 8]. Baumann et al. investigate Flash’s
performance alongside a hybrid row-column store referred to as
“Grouping” [1]. Similarly, Tsirogiannis et al. use a column store
motivated by the PAX layout to create faster scans and joins [13].

Interestingly, our findings contradict recommendations of these
last two studies. Baumann concludes that SSDs shift optimal query
execution towards index-based query plans. The study bases this
conclusion on the observation that asynchronous random reads on
Flash are nearly as fast as sequential reads. Indeed, the arguments
made by Baumann are a key component of the intuition we lay



out in Section 3 that led us to expect a need for SSD-aware query
optimization. However, the conclusion neglects the observations
discussed in Section 5 demonstrating that queries selecting more
than a handful of tuples will likely retrieve the majority of pages
in a relation, and thus gain no advantage from fast random IO.
Tsirogiannis introduces a join algorithm that retrieves only the join
columns, joins these values, and then retrieves projected rows via a
temporary index. By our previous argument, scanning for projected
data should retrieve the majority of data pages, preferring a relation
scan, and thus provide comparable advantage on disk and SSD. We
leave a comparative evaluation of their FlashJoin algorithm on SSD
and disk to future work.
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9. CONCLUSION
Flash-based solid state disks provide an exciting new high-

performance alternative to disk drives for database applications.
Our investigation of SSD-aware query optimization was motivated
by a hope that the drastically improved random IO performance
on SSDs would result in a large shift in optimal query plans
relative to existing optimizations. At a minimum, we expected
that constants capturing relative IO costs in the optimizer would
require update. In this paper, we have presented evidence that
refutes this expectation, instead showing that an SSD-oblivious
query optimizer is unlikely to make significant errors in choosing
access paths or join algorithms. Specifically, we demonstrate
both empirically and analytically that the range of selectivities
for which a scan operation can benefit from SSDs’ fast random
reads is so narrow that it is inconsequential in practice. Moreover,
our measurements of alternative join algorithms reveal that their
performance variability is far smaller on SSDs and is dwarfed by
the 5× to 6× performance boost of shifting data to SSD. Overall,
we conclude that the small and inconsistent performance gains
available by making query optimizers SSD-aware are not worth
the effort. Interestingly, we note that our conclusions may change
with the advent of emerging non-volatile memory devices, such
as phase change and spin-torque transfer memories, that offer
finer (e.g., word-level) access granularity. These memories will
allow tuple (rather than page) granularity accesses, and avoid the
pitfalls of page oriented data stores demonstrated in Section 5. We
intend to investigate the query optimization implications of these
emerging devices in future work.
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